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Abstract

Many types of hypersonic aircraft configurations are currently being studied for their
feasibility of future development. Since the control of the hypersonic configuratins through-
out the speed range has a major impact on acceptable designs, it must be considered in
the conceptual design stage. P.art I of this report examines the ability of the aerodynamic
_alysis methods contained i_ an industry standard conceptual design system, APAS-II,
l,o-_time__e the forces and moments generated through control surface deflections from low
subsonic to high hypersonic speeds. Predicted control forces and moments generated by
various control effec_tors are compared with previously published wind tunnel and flight
test data for three configur_ations: the North American X-15, the Space Shuttle Orbiter,
and a hypersonic research airplane concept. Qualitative summaries of the results are given
for each longitudinal force and moment a.nd each control derivative in the various speed
_ranges. Results show that all predictions of longitudinal stabiltiy and control derivatives
are acceptable for use at the conceptual design stage. Results for most lateral/directional
control derivatives are acceptable for conceptual design purposes; however, predictions at
supersonic Mach numbers for the change in yawing moment due to aileron deflection and
the change in roiling moment due to rudder deflection are found to be unacceptable. In-
eluding shi#ldin-g effects in the analysis is shown to have little effect on ii]'t and pitching
mom ent_predictions while improving drag predictions. Overall, lateral/directional contrQl

del'_atives show better agreement when shielding effects are not included.
In Part II of this report, an investigation of the aerodynamic control effectiveness

of highly swept delta planforms operating in ground effect is presented. A vortex-lattice
computer program incorporating a free wake is developed as a tool to calculate aerodynamic
stability and control derivatives. Data generated using this program are compared to
experimental data and to data from other vortex-lattice programs. Results show that an
elevon deflection produces greater increments in C'_L and C--'M in ground effect than the
same deflection produces out of ground effcct andthat the free wake is indeed necessary

for good predictions near the ground. L_-=

PRECEDING PAGE BLANK NOT FILMED

ii



Table of Contents

m

Page

Overview ................................. 1

Part I: Validation of Methods for Predicting tIypersonic Vehicle

Controls Forces and Moments

Introduction ................................ 3

North American X-15 Research Aircraft .................. 4

Low Speed: Moo = .056 ...................... 4

Transonic: M_o = 0.80, 1.03, 1.18 ................. 4

Supersonic: M¢¢ = _.96 ...................... 7

Hypersonic: Moo = _.65, 6.83 ................... 8

Summary Results with Maeh Number ................ 9

Hypersonic Research Airplane ...................... 9

Low Speed: Moo = 0._0 ...................... 9

Transonic: 151oo = 0.80, 0.98, 1._0 ................. 10

Hypersonic: Moo = 6.00 ...................... 11

Summary Results with Mach Number ................ 12

Rockwell Space Shuttle Orbiter ..................... 12

Low Speed: )1Ioo = 0._0 ...................... 12

Transonic: Moo = 0.80 ...................... 14

Hypersonic: Moo = 5.00, _0.0 ................... 14

Summary Results with Mach Number ................ 16

Conclusions and Recommendations ...................... 17

References ................................. 19

Nomenclature ............................... 21

Tables .................................. 22

Figures .................................. 24

Appendix: Bibliography of Experimental Force and Moment Data

For Hypersonic Vehicle Configurations

Ili



Table of Contents (eont'd)

Page

Part II: An Analysis of Delta Wing Aerodynamic

Control Effectiveness in Ground Effect

Introduction ................................ 1

Motivation for the Investigation ..................... 1

Scope of the Research ......................... 2

Review of Previous Work ........................ 3

Theoretical Predictions ....................... 3

Ezperimental Results ....................... 4

Theoretical Developments .......................... 6

The Vortex-Lattice Method ....................... 6

The Biot-Savart Law ......................... 11

Determination of the Influence Coefficients ............... 13

Calculation of the Lift Coefficient ................... 16

The Free Wake ........................... 18

The Ground Effect .......................... 23

The Suction Analogy ......................... 27

Total Lift ........................... 27

Total Pitching Moment ..................... 30

Flap Deflections ........................... 31

Results and Discussion .......................... 33

Verification of Results ........................ 33

VLM-FIG Predictions ........................ 49

Summary and Conclusions ......................... 64

References ................................ 66

Appendix A: Computer Program Description ................ 69

Programming Method ...................... 69

Output ............................... 79

Appendix B: Computer Program Listing .................. 80

Nomenclature .............................. 109

iv



Part II: An Analysis of Delta Wing Aerodynamic

Control Effectiveness in Ground Effect

Introduction

Motivation for the Investigation

Due to the new flowfield boundary conditions, like any aircraft, an aircraft

with a highly swept delta planform will experience changes of its stability and

control derivatives as it leaves or enters ground effect. Unlike other aircraft, how-

ever, takeoffs and landings are complicated since elevon deflections produce cou-

pled changes of lift and pitching moments. It is therefore necessary to determine

if there is sufficient control power to trim the pitching moment and allow flight at

a desired lift coefficient when the stability and control derivatives are modified by

ground effect. Such information is important during preliminary design so that

control surface sizes can be estimated based on the least favorable flight condi-

tions.

Because of the lift/moment coupling, elevon deflections required to trim can

affect the lift in an adverse, though perhaps transient, manner. An example of

this is the flare maneuver as the aircraft prepares to land. The elevon deflec-

tion necessary to rotate the nose upward causes a decreased camber of the wing

which leads to a decreased lift coefficient. This results in an undesirable loss of

altitude near the ground. As the nose rotates upward, lift is increased, altitude is
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regained, and the landing proceeds.

Given the proper stability and control derivatives as a function of height, it

is possible to integrate the equations of motion to obtain the flight trajectory and

determine if the desired trajectory is attainable.

Scope of the Research

A vortex-lattice-type computer program was written to facilitate the analy-

sis of the effects of the ground. This program will be used as a tool to estimate

the control and static derivatives in ground effect and out of ground effect. Once

these are known, the equations of motion can be integrated and the flight trajec-

tory found.

The vortex-lattice method is not capable of modelling thickness or viscous

effects. Low aspect ratio delta wings must be thin for high-speed efficiency, how-

ever, so thickness effects may be neglected to the extent which linearized theory

allows and the viscous effects of leading-edge separation may be accurately mod-

eled by invoking the Polhamus Suction Analogy (Ref. 1-3). Since the program

is intended for preliminary design purposes, it is required that it yields reliable

results in a reasonable amount of time. A vortex-lattice program is therefore ap-

propriate.

Tile program was named VLM-FIG, an acronym for Vortex-Lattice Method

for analyzing Flaps In Ground effect. It is capable of analyzing wings which are

twisted, cambered, or cranked at the leading and trailing edges. It can account
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for dihedral and can predict the effects of symmetrical leading- or trailing-edge

flap deflections. If there are several flaps, each can be deflected independently.

The program incorporates a deformable wake and a provision to place a ground

plane at a desired location below the wing. The time-dependent effects of the free

wake and ground plane interactions are not considered. Although some recent re-

search has shown the time rate of change of altitude to be critical for the accurate

prediction of aerodynamic characteristics in ground effect, these claims are more

true for aircraft which have extremely steep glideslopes than for supersonic trans-

ports or even glider-type hypersonic aerospace planes (Refs. 4,5).

The program will calculate the lift and moment coefficients in or out of ground

effect, and with or without control deflections.

Review of Previous Work

Theoretical Predictions

Vortex-lattice computer programs have been used in the past to predict the

potential flows over delta, wings and have been combined with the suction anal-

ogy to predict the aerodynamic characteristics of delta wings (Ref. 6-9). These

programs have been shown to be good predictors of delta wing characteristics,

and have also been shown to be capable of predicting the low-speed aerodynamic

characteristics of hypersonic wing-body combinations (Ref. 10). If the planform

is cropped and/or cranked, then certain correction factors can be applied to the

suction analogy to improve its predictive capabilities (Ref. 11-13).
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Carlson et al. (Re[. 14-18) have developed vortex-lattice programs to pre-

dict the flap effectiveness for wings with near-delta planforms. The programs deal

with only attached flow and they predict that the flap efficiency is highest when

both the leading- and trailing-edge flaps are deflected. The programs use a flat

wake approach and do not consider the effects of the ground. VLM-FIG has sim-

ilar capabilities but is also able to predict the control power near the ground and

considers the influence of a relaxed wake.

Fox (Ref. 19) uses a vortex-lattice code with a flat wake to obtain ground ef-

fect data for delta, wings. The program predicts the experimental lift coefficient

data well, but pitching moment and control power are not evaluated. More re-

cently, Nuhait and Mook (Ref. 20) have investigated delta and non-delta plan-

forms using an unsteady ground effect vortex-lattice program. It was found that

for the steady case, aerodynamic coefficients generally increase as the wing nears

the ground. The time rate of change of altitude enhances this effect, and greater

aerodynamic increases were caused by greater sink rates. Thus, aircraft with

steep glideslopes are more affected by time-dependent effects.

Experimental Results

During the early 1960's work was continuing on the development of the Con-

corde and, consequently, a systematic study of the effect of the ground on the

aerodynamics of delta wings was conducted by Peckham (Ref. 21). Complete

pitching moment and lift data was obtained for a series of delta wings with sharp
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edges, but no control deflections were included.

Chang and Muirhead (Ref. 4) conducted an experimental investigation of the

time-dependent ground effects on delta wings. At high angles of attack and low

ground heights, the unsteady effects nearly double the effect of the ground. The

data was generated at a sink rate of Jt/V = 2.0, however, which corresponds to a

highly unrealistic glideslope angle of more than 60 °.

There is a void in the literature for the subject of delta wings with control

deflections in ground effect. Apparently, no studies similar to Peckham's have

been conducted using delta, wings with flaps in ground effect. Coe and Thomas

(Ref. 22), however, have used an arrow-wing configuration for such a study, and

the general trends of increasing aerodynamic coefficients with decreasing ground

height were again observed.

m



Theoretical Developments

The Vortex-Lattice Method

From the Kutta-Joukowski Theorem, it is known that the lift of an airfoil is

uniquely determined by the amount of circulation which it generates.

l= p V7 (2.1)

where 7 is the vortex strength per unit span, the span being in the direction of

the axis of the vortex.

It can be easily shown using potential flow theory that an infinite vortex

sheet with a constant strength per unit length in the plane of the vortex 7D will

induce a velocity of

(2.2)
v-- 2

If such a distributed vortex is placed in an appropriately oriented free stream, the

velocity above the vortex will add to the free stream velocity, while that below

will subtract.

Because Bernoulli's Principle states that the difference in the velocities of

this fiowfield will create a pressure difference, this distributed vortex will expe-

rience a self-induced force which acts normal to the free stream. This force will

have a magnitude which can be found by beginning with the Bernoulli equation,

1 1
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Ap vl')

where the subscripts 1 and 2 represent the location below and above the vortex,

respectively. From Equation 2.2

Substitution leads to

V2 = 1I+ 7__._D
2

AP = _ p [(V - -- - (V- --

which reduces to

1

Ap = _ p (2V'_)

To convert the pressure to a force, it must be multiplied by an area of 1 • dx. This

results in

Using the relation

1

dl = APdx -- _ p (2VTD)dX

1
7 = 7odz (2.3)

and integrating both sides over a unit chord length, the above yields Equation 2.1,

the Kutta-Joukowski equation (Ref. 23). Thus, a distributed vortex in a free

stream can be used to model the flow over a thin airfoil.

Since the preceding approach to estimating the lift includes only vortices,

there is no provision to account for the effects of thickness on the airfoil aerody-

namic characteristics. For thin airfoils, which are necessary to reduce the wave



drag of supersonic or hypersonic aircraft, this should not impede an accurate so-

lution. In addition, this approach does not restrict the airfoil to lie on a straight

line, since each segment may be linked to another at a different angle. If more

that one segment is present, however, the lift cannot be found so simply. Because

the vortex is no longer an infinite line, the induced velocities above and below the

vortex become unknown.

Supposing that this problem can be overcome, then the force normal to a

plane containing the vortex and inclined to the free stream at an angle c_, can be

determined by the equation

l= p(V cos o_)7o (2.4)

A force will also be generated parallel to the plane due to the addition and sub-

traction of vortex-induced velocities to the free-stream velocity component V sin or,

which is given by

l = p (V sin oL)7 o (2.5)

This force may be thought of as the leading-edge suction force, which is predicted

by thin airfoil theory as a singular velocity at the leading edge of the airfoil. This

singularity causes an infinitely low pressure acting over an infinitely thin leading-

edge radius to produce a force which exactly cancels tile drag due to the lift which

acts normal to the tilted airfoil. In this way, D'Alembert's paradox remains satis-

fied.

Since an airfoil does not produce lift by generating a constant rectangular
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velocity field over its surfaces; a better approximation for the flow over an airfoil

can be obtained using a series of linked vortices of differing strengths. Also, since

a vortex sheet can be related to a point vortex by Equation 2.3, the airfoil may

be further discretized by replacing each vortex sheet with a point vortex of equal

total strength. Each of these point vortices is placed at the one-quarter chord

point of its respective elemental chord, in accordance with Prandtl's standard lift-

ing line theory.

In a similar fashion, two or more chordwise strips of vortices placed side-by-

side and parallel to one another may be used to model a wing. Figure 2.1 shows

how such a lattice of vortices can represent a wing. One important distinction be-

tween the two-dimensional airfoil and the three-dimensional wing is that the vor-

tices of the wing must be horseshoe shaped to satisfy the conservation of vorticity.

The continuous variation of vorticity in both the chordwise and the spanwise di-

rections on the finite, three-dimensional wing is approximated by this lattice of

horseshoe vortices.

Once the wing has been divided into the desired number of trapezoids, re-

ferred to as panels, with a horeshoe vortex bound to the quarter-chord line of

each panel and filaments extending back along the sides of the panel to infinity,

the procedure for determining the aerodynamic characteristics of the wing can be

developed.

The distribution of the force acting on the wing surface is necessary since
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Figure 2. I Vortex Lattice Arrangement Representing a Delta Wing and Its Wake.
(Only One Row of Horseshoe Vortices Is Shown for Clarity)
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it determines the aerodynamic characteristics. To determine this distribution,

the velocities induced by each vortex must be found. A simplified approach is no

longer applicable, since the flow is three dimensional and since each vortex has a

different strength. To determine the velocities, the effect which each vortex has

on the velocities near itself as well as on every other vortex must be considered.

The Biot-Savart Law

The Biot-Savart law can be used to determine how the point vortex will af-

fect the velocity over its own panel and how it will effect velocities over the other

panels, too. The equation can be written in its most general form as

r(_ ×_)
dv = (2.6)

4rl-_ 13

Since each horseshoe vortex consists of a left segment, a bound segment, and a

right segment, this equation must be applied to each segment and then summed

to obtain the total effect of one complete horseshoe vortex. If the endpoints of a

certain segment are A and B, and the induced velocity is desired at point C, as

shown in Figure 2.2, then the expression for the velocity can be written in the

form:

where

--'vc- 4_rpTn(cos_, - cose2) (2.7)

.-p- r,x r2 ,-v,t_.aa_
ro
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Figure 2.2 The Geometrical Arrangement for Applying the Biot-Savart Law to a
Vortex Segment with Positive Vorticity Directed from A to B
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cos61- r o rl (2.8b)
rorl

_2 - r o r _ tz _ )'"."c"cos
rot2
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Equation 2.7 is a vector equation. If the points are arranged according to

Figure 2.2 and the vortex has a positive sign and points in the direction from A

to B, then the algebraic signs of the induced velocity will be accounted for prop-

erly (Ref. 24). Care must be taken to insure that the vortex points in the proper

direction or the sign of the induced velocity will be opposite of what it should be.

Determination of the Influence Coefficients

The velocity which a particular horseshoe vortex induces at every other panel

can be found by summing the velocity induced by its left, bound, and right seg-

ments at the point C, which varies to represent the location of different panels.

The location of point C on a given panel is the three-quarter chord point of the

panel and it is centrally located in the spanwise direction of the panel. This point

is referred to as the control point of the panel. Thus, every horseshoe vortex in-

fluences every control point on the wing according to Equation 2.7. Since the in-

dividual 7n are not yet known, only the influence coefficients, represented by the

factor

1

Cm. - 4rrp (cos01 - cosO_) (2.9)
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can be calculated.

In addition to the coefficients from one side of the wing, the coefficients from

the other side of the wing must be included. This does not double the number of

unknowns since the flowfield is symmetric; however, the same procedure to cal-

culate influence coefficients at every control point due to every vortex must be

executed. This doubles the number of calculations and, since this represents the

largest fraction of the calculations, the CPU time will nearly double.

If the flowfield were not symmetric, the number of unknowns would double

and the flowfield would need to be soh, ed as a single entity. This would require

storing all of the locations of both the left and right side vortices. In the case of

a symmetric flowfield, the vortices on opposite sides of the wing centerline can be

treated as mirror images, but located at different distances from all the control

points on the right side. This is illustrated in Figure 2.3. This has the simpli-

fying effect of allowing the coordinates of the right half to be used to calculate

the influence coefficients of the left half merely by changing the sign of the y-

coordinates of the segment endpoints. Note that points A and B are interchanged

since the sign of the vorticity is opposite.

Now, the influence coefficients from each vortex 7,, are known at each control

point, Cm. This represents a set of simultaneous equations which can be written

-----.4

Vmn = C,,,,,Tn (2.10)

where n represents a. particular vortex and m represents a particular control point.
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Figure 2.3 Reflection Over the Mid-Chord Line to Define Points on the Left Portion

of the Wing
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All that must be determined are the strengths of the individual vortices.

These are found by requiring that the free stream flow perpendicular to the wing

at each control point does not pass through the wing but, rather, is blocked by

being equal but in the opposite direction to the induced velocity perpendicular to

the wing at each control point. The solution is a function of the angle of attack,

the dihedral angle, and the local slope in the chordwise direction. For a flat wing

with no dihedral, it is only a function of the angle of attack at each control point

as given by

w = Vsin o_ (2.11)

Departures from this simplified case are small for thin supersonic wings which

have little camber (Ref. 6-9).

With the velocities, boundary conditions, and influence coefficients known,

the strengths of all the vortices can be found. This is the most important step

of the vortex-lattice method. Once the strengths of the vortices are known, the

ftowfield is solved and the aerodynamic properties of the wing can be found.

m

w

Calculation of the Lift Coefficient

The lift coefficient of an airfoil can be calculated as follows. Beginning with

the definition of sectional lift coefficient,

1

t = p y (2.12)



and equating the left side to Equation 2.1 yields

17

w

,..,-

1

p V_c Ct = p V7 (2.]3)

Without loss of generality, the free stream velocity may be set equal to 1. Can-

celling the density results in a equation which relates the lift coefficient directly to

the circulation

27
Ct = -- (2.14)

c

For a three-dimensional wing, the analysis needs to be generalized a bit more.

The spanwise sectional lift coefficients are summed using a weighted average of

the local chord times the local lift coefficient. Consider a wing which has continu-

ously varying lift and a continuously varying chord in the spanwise direction. The

wing will be discretized depending on the spanwise number of horseshoe vortices

which is chosen to represent tile wing. Such a wing is shown in Figure 2.1. The

wing lift coefficient can be obtained from Equation 2.14 by summing the sectional

lift coefficients across the span and weighting each by the amount of wing area.

which its panel covers. Allowing the subscript j to represent a particular span-

wise location, and summing across the span leads to

1 NSPAN

CL=
j=l

Substituting Equation 2.14 into this expression yields

I NSPAN

CL (2.15)
j=l
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where

NCHOIRD

7/ = _ 7i j=constant
i:1

Multiplying by two to account for the lift acting on both sides of the wing yields

r

CL - 4Ay r_sr,ANs (5.16)
./=1

It is interesting to note that the effect of weighting the lift coefficient by the panel

area is to eliminate the local chord term from the final equation. The only term

with chordwise or spanwise dependence remaining in Equation 2.16 is the circula-

tion term. This allows for a slightly simpler summation procedure. The method

for calculaton of the pitching moment follows from this derivation and will be dis-

cussed toward the end of this chapter.

The Free Wake

The standard vortex lattice consists of horseshoe vortices which each trail

two filaments, at some fixed angle, from the bound vortex to infinity. This is re-

ferred to as a flat or fixed wake method. In this method, the wake will support

a pressure difference across its boundary and altcr the frec-air aerodynamic co-

efficients. At high angles of attack and for low aspect ratios, the wake becomes

more deformed, implying that a fiat wake approach will support greater pressure

differences and cause anomolies in the aerodynamic predictions.

The standard approach also causes difficulty when a ground plane is intro-

duced for obtaining the ground effect characteristics. Since tile filaments trail
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downward towards the ground plane, they will intersect and pass below the ground-

a serious misrepresentation of reality. Furthermore, the image filaments below the

ground will pass up and through the ground into the real world resulting in an-

other serious misrepresentation. Since these problems are pertinent particularly

to this investigation, a free wake analysis was used. The final geometry of the free

wake was determined using the following procedure.

The wake location is determined by using an iterative process which calcu-

lates the wing lift distribution, moves the wake, calculates a new lift distribu-

tion, and moves the wake again. This continues until the entire wake converges

to within a specified criterion.

The geometry of the wake and trailing filaments are shown in Figure 2.4.

The trailing filaments are subdivided into several segments on both the wake and

the wing. This allows the vortex filaments to more closely approximate a curved

path in the wake, or the camber of the wing. This does not have any effect on the

strength of the vortices, it simply allows flexability of location.

Each segment endpoint, except for the last one, is a node at which down-

wash and sidewash velocities are calculated. The velocities are found by using the

Biot-Savart law, just as are the influence coefficients at the control points on the

wing. For the wake, however, the strength of each vortex is known, so the veloc-

ities may be directly calculated without solving a set of simultaneous equations.

The velocity at a node determines the new wake location at that node. Before the
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velocities are calculated for the first time, each node in the wake shares the same

y- and z-coordinates as the point on the wing trailing edge over which it passes.

Each successive node behind the trailing edge will have an z-coordinate which is

Awake greater. This has the effect of preserving the sweep angle and shape of the

trailing edge throughout the wake.

From the magnified portion of the wake in Figure 2.4, it is easy to see that

1/

Az = "_" Awake ,._ 0 (2.17a)

/)

Ay = _- Awake (2.17b)

w + V sin o_

Az = V Awake (2.17c)

In words, the free stream velocity acting over a certain time divided by the

induced z, y, and z velocities acting over the same time will yield a vector which

points directly towards the new wake location. It is necessary to add the z com-

ponent of the free stream to tile velocities in the wake since no solid surface pre-

vents flow through the plane of the original wake. When this is multiplied by

Awake, the new wake location is determined and the node can be moved. Thus,

the induced velocities at the node just ahead of node i must be used to determine

the new location of node i. So although the trailing edge is fixed, the velocities

must be calculated there for the next wake node to be properly moved. Similarly,

this explains why it is unnecessary to calculate the induced velocities at the final

wake node.
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The wake nodes of each iteration can be compared to the locations found by

the previous iteration or, equivalently, they can be compared to the locations of

fixed points in the wake. This investigation uses the second approach since the

programming is easier to implement, and uses the originaI wake locations as the

fixed locations in the wake. Reference to Figure 2.4 allows a comparison of the

type

specified

¢T¢ ..... t -- CTprevlou, <_ convergence (2.18)
Iterat|on iteration criterion

There are severalmethods by which the wake iterationmay be terminated.

The distance that the wake willmove isnot known a priori,since the value of

Awake isarbitrary.For thisreason, itwas decided that the wake convergence

should be measured in terms of angular distance. Equivalent downwash velocities

at different locations in the wake will result in different angles, if they are mea-

sured with respect to a line emanating from a single location such as the wing

trailing edge. It is conceivable that for points far back in the wake such an a.p-

proach could lead to a "trigonometric convergence" where even large wake move-

ments would be dwarfed by the node's distance to the trailing edge. If angles are

measured with respect to appropriate and different points for each node, however,

then angular distances are as reliable as linear distances and the a priori knowl-

edge of the magnitude of Awake is not required. These appropriate points are

the original wake nodes and tile angle which is measured is denoted in Figure 2.4

as 4)7-. Two successive iterations generate two values of ¢7" per node and if all of
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these values are within say, 1/100 of a degree, the iteration is terminated.

The Ground Effect

The effect of ground proximity is modelled by placing an identical image

wing the same distance below the ground as the real wing is above the ground.

The sign of the circulation of the image wing is equal in magnitude but opposite

in direction to that of the real wing. This has the effect of switching points A and

B in Figure 2.2. The geometry of the two wings near the ground is shown in Fig-

ure 2.5.

Finding tile coordinates of the vortex segments which lie on the image wing

and in the image wake is accomplished similarly to the previously discussed ad-

dition of the left half wing. Because the wing is at an angle of attack, however,

certain transformations must be used to determine the coordinates of the image

wing. For very small angles of attack, these transformations vanish since the in-

tersection of the extensions of the two wings is approaching a point infinitely far

downstream. If this were the case, the coordinates of the image wing would be

determined by switching signs of the y- and/or z-coordinates of the real wing, de-

pending on the particular location of the image segment. As shown in Figure 2.6

and using Region 1 for comparison, Region 2 would have opposite y-coordinates,

Region 3 would have opposite y- and z-coordinates and Region 4 would have op-

posite z-coordinates.

Since the image wing coordinates are found by rotating the real wing through
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an angle of 2c_, such a simplified approach can not be used if o_ is not approxi-

mately zero. Instead, the z-coordinates of Region 3 and Region 4 must undergo

transformations rather than sign changes. This z-coordinate transformation de-

pends on h/b and the additional height above the ground caused by camber, di-

hedral, and twist. The changes in the signs of the y-coordinates are, however,

the same as those changes which would be made when considering the illustrative

simplified case.

The transformations of the coordinates for the general case of an angle of at-

tack which is not approaching zero are as follows. First, the point of intersection

of the downstream extension of the mid-chords of the two wings must be deter-

mined. If the height of the wing above the ground is measured from the trailing

edge and is non-dimensionalized by the wing span, the intersection point, INT, is

found by

INT = .h/b (2.19)
sin c_

The z-coordinates of the image wing are also found using simple geometry by the

equation

z_ = zl - (DIST) sin(2o0 (2.20)

where

DIST = [(XTE(I) - zl) + INT] cos(2o_)

The new z-coordinates are then found by the equations

z_ = INT' - DIST

(2.21)

(2.22)
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where

INT'= XTE(I) + INT (2.23)

If the non-dimensional root chord has been set to 1, then XTE(I) = 1 for Equa-

tions (2.21) and (2.23). If the trailing edge is notched to create an arrow-type

planform, it is important to determine the value of ttle root chord h/b which cor-

responds to the wing tip intersection with the ground. This is the minimum h/b

achievable for that planfi_rm.

In order to compare the h/b values obtained from sources which use points

other than the trailing edge to reference the wing height above ttle ground, the

following conversion formula is used

h = h_o_ - (co - c_r.r) sin oe (2.24)

co can be set to 1 as it has been for other calculations.

The Suction Analogy

Total Lift

For highly swept, low aspect ratio wings, potential flow theory is not suffi-

cient fi_r calculating the aerodynamic characteristics. Above a small angle of at-

tack, which is approximately d degrees for thin supersonic or hypersonic wings,

the potential flow separates from the leading edge and creates a strong vortex

above the wing along the leading edge. The vortex will contribute to the lift and

the drag of the wing and as the angle of attack increases, the vortex becomes
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stronger. At angles of attack greater than about 20 degrees, the part of the vor-

tex near the trailing edge will begin to migrate inboard as well as upward and

away from the back of wing.

In order to calculate the affects of this vortex, the Polhamus Suction Analogy

is used. The method is based on the premise that when the flow separates from

the leading edge, the leading-edge suction force is rotated 90 ° to become a lift

force rather than a thrust force. It is also assumed that the flow reattaches to the

wing downstream of the leading-edge vortex and implicitly requires a Kutta-type

boundary condition at the leading edge. An interesting feature of this method is

that it uses potential flow theory to calculate the non-linear vortex effects.

According to the suction analogy, the lift coefficient of a delta wing is given

by

CL = l(p cos2a sin _ + K,, cos o_ sin_o_ (2.25)

where the first term represents the potential lift and the second term represents

the leading-edge vortex lift. The first term does not include the component of the

leading-edge suction force which acts in the positive z-direction, rather, this term

is included in the vortex lift term.

The factor Kp is determined by calculating the spanwise sectional lift coef-

ficients, dividing them by cos_c_ sin c_, and then summing them across the span.

For small angles of attack, cosc_ _ 1, sino_ ._ a, and sin2a _ 0. In this case,



Equation (2.25) reducesto

CL _ I_pO_
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which shows that I(p is simply the potential lift curve slope. For a delta wing of

given aspect ratio, I(p is constant to first order. When the effects of a deformed

wake are included, it becomes a weak function of the angle of attack. It is also a

function of the wing height above the ground.

The factor K, is determined by applying the Kutta-Joukowski theorem to

the flow around the leading edge of the airfoil. This approach yields

Ct = 2(sin c_ - sin _i)7 (2.26)
c

which is the same form as Equation 2.14. Following a similar procedure a.s was

used to calculate CL for the entire wing, CT for the entire wing is given by

CT--s4Ay Nsr.^.____Tj(sin c_ -- sin Or,N)_ (2.27)
j=l

u

by

The suction force depends on the local leading-edge sweep angle and is given

Cr
Cs - sin h (2.28)

The vortex lift, eLy, and tilt vortex constant, K., are then given by

CL. = Cs cos a (2.29)

Kv = CL,/ sin sc_ cosc_ (2.30)



Like Kp, Kv is constant to first order, but is a function of the angle of attack

when the effects of the deformed wake are included. It is also a function of the

wing height above the ground.
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Total Pitching Moment

The potential pitching moment is calculated by finding the normal force

which acts on a particular panel and multiplying it by the panel distance to the

wing apex. This is repeated for each panel and then summed to obtain the total

moment. Note that because of the loss of leading-edge suction, CN is given by

the equation

cN = eL/cos (2.31)

The vortex lift causes a moment also, but the method for finding it is somewhat

different. Since the flow separates at the leading edge, the vortex lift acts close

to the leading edge across the entire span. Thus, vortex lift is almost a force per

unit length of leading edge rather than a force which is distributed over all of the

panels of the wing, as is the potential lift. The leading-edge suction force is cal-

culated at a particular leading-edge segment to the apex. It is assumed that only

vortices in the chordwise row of the leading-edge segment influence the suction

force at that segment.

In order to compare data from references which use different pitching mo-
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ment axesand different referencechords, the following conversionis used

[6" (CM -- CMo)] CL (Cmoment) (2.32)cM= e/c0

Normally, the sign of CM from the source will be negative.

Strictly, the suction analogy is applicable only to delta planforms. For arrow-

type planforms, there may not be enough outboard wing area for the flow to reat-

tach as the analogy requires. For diamondctype planforms, there is area behind

the basic delta, shape which allows for additional lift, which is mainly potential.

The effect of the notch ratio on the lift coefficient is small; however, the effect of

the notch ratio on the pitching moment coefficient is large since the notch is lo-

cated at the rear of the wing. This provides a large moment arm for small changes

in lift and results in poor predictions for non-delta planforms.

The wing leading edge may be cranked and the wing tip may be cropped. If

this is the case, there are additional vortex constants which account for the lift

generated around the side edge and for the downstream persistence of a shed vor-

tex due to a change in the leading-edge vortex strength caused by the crank.

Flap Deflections

When a flap is deflected, it changes the locations of the vortex segment end-

points and the control points which lie on panels which are affected by the deflec-

tion. Also, the slope of the wing at the affected control points is changed by an

amount equal to the flap deflection angle. These changes in location and slope



alter the influencecoeftqcientsand boundary conditions, resulting in a different

flowfield.
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Results and Discussion

Verification of Results

Figures 3.1-3.10 are presented to provide a validation of tile ability of VLM-

FIG to predict experimental results. They are also intended for comparison of

VLM-FIG to other programs, primarily the Aerodynamic Preliminary Analysis

System, APAS (Ref. 25) which is a fixed-wake vortex-lattice program.

Figure 3.1 compares the results from several programs and also presents an

experimental data set which can be compared to the predicted total lift coeffi-

cients. The potential lift coefficient is of interest for comparing the theoretical

analyses, but it cannot be separated from vortex lift in reality. From 0 to 12 de-

grees angle of attack, all three methods agree well with the experimental data,

but APAS is slightly better; beyond 12 degrees, VLM-FIG is the best predictor.

The agreement which APAS shows at these low angles of attack is, apparently,

fortuitous.

APAS calculates aerodynamic coefficients for unit angles of attack and for

unit flap deflections and then multiplies the coefficient by the actual angle of at-

tack of flap deflection to obtain the actual coefficient (Ref. 9.5). For this reason,

APAS results are completely dependent on the low angle of attack aerodynamic

characteristics. The slope of the potential lift curve is theoretically greatest at

cr = 0 ° and gradually decreases with increasing o_. If the slope at c_ = l ° is

used for all angles of attack, the potential lift curve will be linear and will pre-

33
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diet potential lift coefficients which exceed those predicted by VLM-FIG type pro-

grams. This scenario matches exactly the potential lift curve in Figure 3.1. The

vortex lift coefficient is directly proportional to a function of the slope of the po-

tential lift curve so, if the slope is overpredicted, then the vortex lift is also over-

predicted. Thus, APAS incorrectly overpredicts the potential lift, the vortex lift,

and consequently, the total lift, resulting in apparently fortuitous agreement with

the experiental results.

It is interesting to note that VLM-FIG and TN D-3767 predict identically

the potential lift curve throughout the angle of attack range, but they predict

slightly different total lift coefficients at higher angles of attack. Since VLM-FIG

uses a relaxed-wake approach and TN D-3767 does not, it can be inferred that

the effect of the relaxed wake out of ground effect is to alter the vortex lift co-

efficient only. This is equivalent to stating that the free wake causes the vortex

constant, K,,, to become a function of the angle of attack, but that it does not

strongly affect the potential constant, Kp.

Figure 3.2 compares the pitching moment coefficients predicted by VLM-FIG

with those predicted by APAS and experimental data.. VLM-FIG produces results

which eliminate about 60% of the error which would be obtained using APAS.

The longitudinal potential lift and vortex lift loadings are similar, but the cen-

troid of the potential lift is located somewhat, farther aft than the vortex lift, ex-

cept a.t low lift coefficients. Thus, the potential lift moment is greater than the
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vortex lift moment for all but tile lowest lift coemcients. Near CL = .11 the two

are about equal. In this figure, the vortex moment is not represented by the dif-

ference between the total and potential moments since the potential moments are

plotted versus potential lift coemcient and the total moments are plotted versus

total lift coefficients.

The change in slope of the total moment coefficient curve at CL = .08 is

most likely due to onset of measurable amounts of vortex lift. This is shown in

Figure 3.1 as a change in the slope of the total lift coefficient at o_ = 3 ° and such

a change would have the effect of shifting the total moment curve to the right, as

in Figure 3.2.

Figure 3.3 is intended to illustrate that the moment coemcient is not well

predicted by the suction analogy if the wing has an arrow type planform, as ver-

ified experimentally in TN D-6344. An arrow planform can be considered a delta

planform with additional outboard wing area behind the trailing edge. This ad-

ditional area allows the ]eading edge vortex to persist further aft and create a

stronger nose-down moment than that predicted by the suction analogy. Other

figures which display comparisons to arrow wings should be viewed in this light

(rtef. 26),

Figure 3.4 shows the change in the moment coefficient due to unit elevon de-

flection centered at 8 o and 20 °. Both APAS and VLM-FIG show that the nose-

down moment which is generated will increase as the lift coefficient increases,
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but the APAS values do not change as much with lift coefficient. VLM-FIG pre-

dicts decreasing control power for higher control deflections, while APAS predicts

that control power is nearly independent of the control deflection. This difference

probably results from the free-wake analysis of VLM-FIG, which is able to model

the non-linear effects at high deflection angles. The variations observed in the

APAS predictions result from non-linearities inherent to the suction analogy.

Figure 3.5 compares the predictions generated by VLM-FIG, APAS, and ex-

perimental data when a 700 delta wing enters ground effect. Again, VLM-FIG

produces better results than APAS, although it still overpredicts the experimental

value obtained at a = 15 °. At such intermediate angles of attack the leading-edge

vortex begins to migrate upward at the rear of the wing due to real fluid effects.

This causes a decrease in lift and pitching moment coefficients which could ex-

plain the theoretical overprediction.

There is no standardized procedure [or non-dimensionalizing tile height of

the wing above the ground. For this investigation, the height above the ground is

defined as the height of the root-chord trailing edge and it is non-dimensionalized

by the wingspan. Fox (Ref. 19), for example, defined the height as the height of

the local quarter-chord point of the mean aerodynamic chord and non-dimen-

sionalized by the mean aerodynamic chord. Thus, conve rsions were necessary to

compare heights which had been non-dimensionalized differently. Unfortunately,

the wing height above the ground is a function of the angle of attack of the wing
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which disallows a one-to-one height conversion factor from the reference data set

to the VLM-FIG data set. Each height, therefore, requires its own angle of at-

tack conversion. Using Figure 3.5, as an example, the reference's non-dlmensional

height was .4, which corresponded to a VLM-FIG non-dimensional height of .4625

at ot = 10 ° and .4675 and c_ = -15 °. In this case, the conversion is almost in-

dependent of angle of attack and there is almost a one-to-one conversion. The

height differences for other figures are milch greater, however, and cannot be ig-

nored. The range of non-dimensional heights used will be stated in each figure, as

needed.

Figure 3.6 shows how tile ground affects the moment coefficient of a 70 ° ar-

row type planform. This planform has the same leading-edge sweep angle and

notch ratio of a more complex planform, which was part of a configuration, pre-

sented in TP-1508. Based on this idealization and the intrinsically poor arrow

wing prediction capabilities, the figure is internally consistent.

The change in moment coefficient due to a 1 ° change in elevon position at

a deflection of 20 ° on a 70 ° delta wing is shown in Figure 3.7. As in Figure 3.4,

VLM-FIG predicts a greater nose-down moment than APAS. When Figures 3.4

and 3.7 are compared, it becomes evident that both methods are affected by the

ground in a similar way, namely, that the ground provides additional control power.

The increment predicted by VLM-FIG is about that which APAS predicts for low

to medium lift coefficients. At a lift coefficient of 1.0, however, the kink in the
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VLM-FIG moment coeMcient causes a cross-over with the values predicted by

VLM-FIG in Figure 3.4 and consequently, there is slightly less control power pre-

dicted at a lift coefficient of 2.0. APAS shows no such change, but rather a con-

tinuously increasing difference between the two as the lift coefficient increases.

Figures 3.8 and 3.9 compare the values of the potential and vortex constants

as predicted by two methods. For an aspect ratio of 1.0, the two methods match,

which causes the potential lift agreement found in Figure 3.1. The vortex lift con-

stant, which becomes a function of angle of attack when the wake is relaxed, is

calculated at low angle of attack for generating the data in Figue 3.9. At low an-

gles of attack, VLM-FIG predicts a vortex constant which is just less than that

predicted by TN D-3767. At high angles of attack, however, VLM-FIG predicts

a vortex constant which is greater than that predicted by TN D-3767; this is ev-

ident in Figure 3.1 as a cross-over near 8 ° of the values predicted by these two

methods.

Figure 3.10 compares two theories and an experiment and shows that llft

increases due to ground effect as the wing approaches the ground. Both closely

predict the experimental values, but VLM-FIG is better until a non-dimensional

height of about 0.2. The difference between the two predictive methods is primar-

ily that VLM-FIG has a relaxed wake and TN D-4891 does not. For this reason,

it seems strange that TN D-4891 apparently predicts the rift better at very low

heights above the ground. As with Figure 3.7, a non-dimensional height of 0.11
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represents a true height of .05Co, which is so close to the ground that the airplane

will most likely have landed.

VLM-FIG Predictions

The nose-down moment coefficient increases near the ground as shown in

Figure 3.11. The coefficient ¢9CM/0O_ is nearly constant with changing non-di-

mensional height, portrayed by the nearly constant difference between the two

curves in the figure. At lower non-dimensional heights OCM/Oo_ is slightly greater,

indicating that as the airplane begins to flare and increase its angle of attack, the

nose-down pitching moment increases slightly. As with any airplane, it is impor-

tant that this parameter does not markedly decrease as either o_ is increased or

h/b is decreased, since this could lead to an unstable situation as the airplane de-

scends. As such, however, the longitudinal stability does not decrease when the

airplane is operating in ground effect.

Figure 3.12 was generated by using data obtained from VLM-FIG when it

operated in its normal mode and when it was forced to terminate after the flat

wake aerodynamic characteristics had been calculated. It shows that most of the

out-of-ground-effect discrepancies between the two methods occur at higher an-

gles of attack, which is consistent with the limitations of linearized theory. At

an angle of attack of 24 °, the ratio of the change in vortex lift to the change in

potential lift, ACL,,/ACLp, is 3.7. This supports the assertion made concerning

Figure 3.1 that the effect of the free wake is to alter primarily vortex llft.
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Figure 3.13 also compares the flat and relaxed wake values which were gener-

a.ted by VLM-FIG. The potential and total moments for both wakes are identical,

indicating that the centroid of the lift does not change when the wake is relaxed,

even though the lift does change. An interesting feature of this figure is that the

slope of tile potential moment becomes more negative with increasing lift coeffi-

cient but the total moment slope remains constant with lift coefficient. The sig-

nificance of this feature is unclear at this time, but it implies that a non-linear

vortex moment adds to the potential moment in such a way to keep the total mo-

ment a constant function of the lift coefficient.

The differences between the flat and relaxed wake predictions are much dif-

ferent when a wing is analyzed in ground effect, as Figure 3.14 illustrates. At

low angles of attack, the potential lift and vortex llft are higher for the flat wake

method than for the relaxed wake method. According to Figure 3.15, the per-

cent change between the lift coefficient in ground effect and out of ground effect

is greatest for the flat wake near an angle of attack of 3 °. This is reflected by

the decreased slope of the flat wake curves in Figure 3.14. The reason for these

changes in slope is that until the angle of attack reaches about 3 °, the increased

circulation is more strongly influenced by the height of the wing above the ground,

but after that, is more strongly influenced by the angle of attack of the wing. For

the relaxed wake, it seems that most of tile increase in lift coefficient occurs due

to ground proximity; however, there is some increase in the lift coefficient due to
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operating at high angles of attack near the ground. These curves agree with the

general trends and orders of magnitude of data presented in Reference 4.

Figure 3.16 shows that the relaxed wake method predicts a pitching moment

which differs by a few percent from that predicted by the flat wake method when

operating in ground effect. Thus, the center of pressure moves slightly aft due to

the relaxed wake in ground effect. This could be a result of the relaxed wake be-

ing more strongly constrained by its image wake than the fiat wake is constrained

by its flatness condition. It seems logical that the rear portions of the wing would

then be more affected by this than the front portions, resulting in rearward center

of pressure movement.

Figure 3.17 is a comparison of the lift coefficient in ground effect and out of

ground effect as a function of the angle of attack. The curves were generated by

combining the relaxed wake results of Figures 3.12 and 3.15. The increase in po-

tential lift accounts of about 1/3 of tile total lift increase at o_ = 24 °, while it

accounts for a.lmost all of the total lift. increase at low angles of attack. Since the

vortex and potential lifts are nearly equal at cr = 24 °, and since the increase in

the vortex lift is twice that of the potential lift, it can be inferred that ttle ground

affects the vortex lift, more than it affects the potential lift. At such high angles

of attack, however, real-fluid effects cause tile leading-edge vortices to move up-

ward off the aft portions of the wing, causing a decrease in vortex lift. Therefore,

it should be expected that, in reality, the ground will cause the vortex lift to rep-
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resent a smaller percentage of the total lift than VLM-FIG predicts. The effect

that an image leading-edge vortex has on the wing leading-edge vortex should be

modelled by VLM-FIG, since the vortex strength is determined in part by the

downwash and since tile downwash is included in the theory.

Figure 3.18 shows that the moment coefficient does not change significantly

when the wing is in ground effect. The data were generated using tile relaxed

wake approach and show that the centrold of tile lift is unaffected by the ground

effect. This graph is a composite of tile relaxed wake moment curves shown in

Figures 3.13 and 3.16.

The change in the lift coefficient due to a unit elevon deflection centered at

8 ° as the wing approaches the ground is shown in Figure 3.19 for three angles of

attack. As the wing nears the ground, a unit flap deflection results in a greater

change in the lift coefficient. For a = 8 ° and 16 °, the slope of the curves contin-

uously increases, but for c_ = 24 °, the change in the slope of the curve decreases

when the wing reaches a non-dimensional height of 0.4. The cross-over also sug-

gests that for low heights, there is an angle of attack which exploits both the an-

gle of attack effects and the height effects in such a way that tile change in lift

due to a given control deflection is maximized. This angle appears to be between

16 ° and 24 ° from the information in the figure.

Figure 3.20 shows tile change in the moment coefficient due to a unit elevon

deflection as the wing approaches the ground at three different angles of attack.
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At low and medium angles of attack, the change in the nose-down moment in-

creases as the non-dimensional height decreases. At high angles of attack, the

nose-down moment increases until a non-dimensional height of 0.3, at which point

the moment, generated by a given control deflection decreases. Thus, there is a

predicted slight decrease in control power for the combined conditions of a high

angle of attack and a low height above the ground.

As noted for Figure 3.19, there appears to be an angle of attack between

o_ = 16 ° and o_ = 24 ° which maximizes the control effectiveness about a given

deflection at low heights above the ground. Simply, this means that both fig-

ures suggest that control power is not a monotonic function of the angle of attack

when the wing is so close to the ground.

Finally, it should be pointed out that the changes in lift and moment coef-

ficients displayed in Figures 3.19 and 3.20 were determined for a positive elevon

deflection. A negative elevon deflection may have a somewhat different effect con-

sidering the possible interaction of the relaxed wake with the ground plane.



Summary and Conclusions

An investigation of the aerodynamic characteristics of highly swept delta

wings with flaps operating in ground effect was conducted. A vortex-lattice com-

puter program which incorporated a ground plane and a relaxed wake iteration

scheme was developed to facilitate the research. The results generated by the

program, VLM-FIG, were compared with experimental data and other similar

programs to evaluate its ability to predict experimental results and its ability to

improve upon previous programs, respectively. The following conclusions are pre-

sented:

1. It was found that VLM-FIG is a better predictor of aerodynamic characteris-

tics than APAS, presumably because VLM-FIG uses a free-wake analysis.

2. VLM-FIG predicts that the moment due to a flap deflection in ground effect

generally produces a greater increase in both CL and CM than the same de-

flection produces out of ground effect.

3. When results from VLM-FIG using a free and flat wake in and out of ground

effect were analyzed, it was found that the ground effect and the free wake

affect the vortex-lift characteristics of the wing more than the potential-lift

characteristics. In addition, when the wing was evaluated in ground effect

tile effects of the free wake were significant.

4. VLM-FIG has been shown to be an effective tool for predicting stability and

control derivatives. These derivatives are necessary for future work directed
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towards a,full static and dynamic stability and control analysis.
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Appendix A: Computer Program Description

Programming Method

The computer program used to perform this investigation will be explained

with continual reference to Figure A.1. Figure A.1 provides a general outline of

the steps which the program follows when it is executed.

Before VLM-FIG is run, three separate programs must be defined and lo-

cated in the same directory as VLM-FIG. The first, of these, "blok.for" contains

the variables in the common block as well as the variables which need to be di-

mensioned; it should not be altered. The second is "data.for." which contains all

flap and wing geometrical data., the angle of attack, and the ground-effect infor-

mation. This will need to be altered each time a different case is run. Table A.1

defines a|] of the variables needed for the most general cases to be run and Fig-

ure A.2 displays theses variables on a generalized wing. Note that an undeflected

trailing-edge flap may be handled by setting DELTE = 0.0, by setting ITEFLEC

= 0.0, or by setting NTEFL = 0. The same is true for a leading-edge flap if its

analogous variables are similarly defined. The third program is "panel.for," which

contains the wing and wake panelling information. Dense panelling results in ex-

cessive CPU time, especially if the ground-effect option is being used.

After subroutine VINITL has been called and tile three ancillary programs

have been included, the program calls subroutine GEOM. The main purpose of

GEOM is to determine the x and y coordinates of the control points and of the
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Table A.I A List of Variables to be Defined in 'data.for'

Leadirlg Edg_ Variables

NLEFL
ILIGNL = 1

FANG(1)
FLASWE(1)
FLINX(1)
FLn,ZY(:)
FOUTX(1)
FOUTY(1)
IDFLECT(1) = 1
DELLE(1)

FANG(NLEFL)

FLASWE(NLEFL)
FLE'VA(NLEFL)
FL:NY(NLEFL)
FOUTX(NLEFL)

FOUTY(NLEFL)

IDFLECT(NLEFL)= 2
DELLE(NLEFL) = 0.0
NUMEDGL = 2

Description of Invut

number of leading edge flaps
first inboard part of flap is aligned with the freestream
hinge-line sweep angle of flap(I) (downward from horizontal)
leading edge sweep angle of flap(1) (ccw from vertically down)
x coordinate of the most inboard hinge point

y coordinate of the most inboard hinge point
x coordinate of the most outboard leading edge point

y coordinate of the most outboard leading edge point
flap(1)is deflected
flap(l) deflection in degrees

hinge-_e sweep angle of outermost flap
leading edge sweep angle of outermost flap
x coordinate of the most inboard hinge point on outermost flap
y coordinate of the most inboard hinge point on outermost flap
x coordinate of the most outboard Ic point on outermost flap
y coordinate of the most outboard le point on outermost flap

flap(NLEFL) is not deflected
flap(NLEFL) is deflected 0.0 degrees
numeric designation of the le flap on the wing edge

Trallin_.=Edge Variables

NTEFL

ILIGNT(1)

TFANG(:)
TFLASW(1)

TF:NX(:)
TFINY(1)

TOUTX(:)

TOUTY(1)

rrEFLEC(:)
DELTE(1)

ILIGNT(NTEFL)

TFANG(NTEFL)

TFLASW(NTEFL)

TF:NX(NTEFL)
TFZNY(NTEFL)
TOUTX(NTEFL)

TOUTY(NrI'EFL)

rrEFLEC(NTEFL)
DELTE(NTEFL)
NUMEDGT = 2

Description of Input

number of trailing edge flaps
inboard part of fn'st te flap is aligned with the freestrcam
hinge-line sweep angle of te flap(l) (downward from horizontal)
te sweep angle ofte flap(l) (downward from horizontal)
x coordinate of most inboard hinge point of TEF1
y coordinate of most inboard hinge point of TEF1
x coordinate of most outboard point on te of TEF1
y coordinate of most outboard point on te of TEF1
TEFLAP(1) is deflected
TEFLAP(1) deflection in degrees (+ downward)

inboard part of outermost te flap is aligned with the fr_estream
hinge-line sweep angle of outermost te flap
nailing edge sweep angle of outermost te flap
x coordinate of most inboard hinge point of outermost te flap
y coordinate of most inboard hinge point of outermost te flap
x coordinate of most outboard te point of outermost te flap
y coordinate of most outboard te point of outermost te flap

outermost te flap is deflected
TEFLAP(NTEFL) deflection in degrees (+ downward)
numeric designation of the te flap on the wing edge
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endpoint of the vortex segments which lie on the wing. The trailing-edge points

where the vortex segments first touch the wake are also calculated. As a conse-

quence of calculating these values, the aspect ratio, wing span, and chord at vari-

ous spanwise locations are found.

Since the program allows for wings with up to nine cranks in the leading and

trailing edges, it is necessary to determine the spanwise location of a point. The

subroutines FIND and TEFIND determine the distance of the leading edge be-

hind the apex and of tile trailing edge behind the root chord. This enables the

local chord to be calculated, which is critical to proper panelling.

If the ground effect option is being used, GEOM calculates the parameters

which are used to locate the intersection of the root chords of the real wing and

the image wing.

The subroutine ZWINGIN is intended to be used for manually entering the

z coordinates of a nonplanar wing. By default, a planar wing is input. If the

ZWINGIN option is chosen, tile program will list the z and y coordinates of the

control points and vortex segments. The user must then input the proper z co-

ordinates. The subroutine SLOPE will set the slope of the wing to zero at each

control point. For non-planar wings, the slope at each control point must be en-

tered manually.

At this point, the program has determined the slope and location of each

control point and has determined tile locations of all wing vortex segments. If
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the wing is flapped, it must,be determined which of theseshould be altered, and

by how much.

Subroutine FLAPLE usesthe points which wereenteredin "data.for" to

define regionsnear the wing leadingedgewhich are flapped, while subroutine

FLAPTE usesthe points to define regionsnear the wing trailing edgewhich are

flapped. If a vortex segmentendpoint lies on a flapped region, then it is con-

nected to the hingewith a perpendicula.rline and this line is rotated about the

hingeline until it reachesan angle which equals the flap deflection. Control points

are movedsimilarly, and the slopeof the wing is also changedby an amount equal

to the flap deflection. SubroutinesPER.PLE and PERPTE are usedfor finding

perpendicular distancesand changingslopesof affectedpoints.

The wing geometry is now fixed, but the wakegeometry must be defined.

Subroutine ZWAKEIN performs this function by defining each node in the wake

as having the same y- and z-coordinates as the point on tile trailing edge of the

wing over which the segment's vortex line passed.

The next major portion of tile program enables the wake to reach a relaxed

position and it begins when the DO WIIILE loop is first encountered.

There are two phases to the iteration scheme, the first occurs when the vari-

able NEVEN equals 1 and the second occurs when the variable NEVEN equals 2.

Phase 1 calculates influence coefficients, solves a set of simultaneous equations to

find the circulation strengths, and then calculates the lift coemcient. Phase 2 uses
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the known valuesof circulation to calculate the downwashin the wake and then

a subroutine is usedto move the wakelocations. Phase1 is then re-enteredso

that the strengths of the circulations basedon the new wakelocations can be re-

calculated. The specificpa.thwhich is followed to carry out this procedure is now

described.

For Phase1, subroutine BIOTVEC is called so that the endpoints of the

vortex segments can be selected for analysis. Since the vorticies are horseshoe

shaped, vortex segments will overlap near the rear portions of the wing which

means that several vortex strengths share the same location on the wing and

wake. Subroutine BIGSUB is then called so that the influence coefficient at each

control point due to tile particular segment may be found. These values are then

added to the previous values of the influence coefficient of each control point.

Since BIGSUB must calculate the effect for many segments (,,_ 1000) at all the

control points, the only information about the segment which is saved is the seg-

ment bound vortex location and tile location of the control point being influ-

enced. This allows the versatility to standardize the calculations, particularly

with regard to ground effect, but consequently only the summed influence coef-

ficients, G',-,,_ can be known after a segment has been processed by BIGSUB. Sub-

routine BIGSUB calls subroutines CROSS, SMAG, DOT, and FACTOR to cross

two vectors, find the magnitude of a vector, dot two vectors, and calculate a fac-

tor needed for the Biot-Savart law, respective]y. Subroutine ZWAKEIN is called
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next, but sincethe iteration is in Phase1 control is returned to the main program

and suroutinesCNDNS4 and CNDNS2 are called.

CNDNS4 is used to condensea four dimensionalarray into a two dimensional

array, while CNDNS2 is usedto condensea two dimensionalarray into a one di-

mensionalarray. This is required sincethe cannedsubroutine LEQT1F solves

a system of equations with oneand two dimensionalarrays. No information is

gainedor lost in this process,the control points and circulation strengthsare sim-

ply identified using a different filing system.

Next, the boundary conditions arecalculated, the linear equation solving

subroutine LEQT1F is called, and WLIFT is called to calculate the lift coeffi-

cient. The iteration phaseis changedfrom NEVEN = 1 to NEVEN = 2 and the

second phase of the iteration is started.

Subroutine BIOTVEC begins the iteration phase by performing the same

function as it did for Phase 1, namely, to send all of the vortex segments to sub-

routine BIGSUB for processing. Since the program is in Phase 2, BIGSUB cal-

culates the influence coefficients as before, but since the circulation strengths

are known from Phase 1, it proceeds to calculate the downwash at each node in

the wake. Again, subroutines CROSS, SMAG, DOT, and FACTOR are called by

BIGSUB.

ZWAKEIN is the next subroutine to be called, In this phase, it is the most

versatile subroutine in the program. The first two roles of this subroutine are to
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define vectors from each node to the node just downstream of it and from each

node to the new wake location of the node just downstream of it. Certain vector

operations are performed on these vectors so that the angle between them can be

calculated. The subroutine then checks if all of the nodes have angles which are

within the termination limit.

If all angles are within this limit, a flag variable is set for termination and

subroutines VORTEX, PPITCII, and VPITCtl are called. These subroutines cal-

culate the vortex lift, the potential pitching moment and the vortex pitching mo-

ment. Subroutine VPITCII then calls OUT which writes the output to a file, the

details of this output will be explained in the next section.

If all angles are not within the termination limit, the flag variable is not set

for termination, and control is soon returned to the main program where it will

switch NEVEN and the program will re-enter Phase 1. Because of empirical evi-

dence gathered during the program's development, there is an option which allows

the program to be terminated even if all of the wake nodes have not converged. If

more than ten fllll iterations, consisting of two phases each, have been performed,

the program's flag variable is set to the termination value and the termination

procedure described earlier is commenced. This option is most useful for high an-

gles of attack and it does not alter the results.
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Output

Subroutine OUT is used to generate the output of VLM-FIG. The angle of

attack, the taper ratio, the notch ratio and the leading-edge sweep angles are

the parameters which are echoed as a. check that they were properly entered in

the program. Rather than echo all of the other input parameters, the aspect ra-

tio is printed. The aspect ratio is dependent on sweep, crank location, notches,

and cropped tips and therefore, reveals a good deal of information about the pro-

gram. If the aspect ratio is too low, for example, it may indicate that the tip

chord which was entered was too large.

The potential, vortex, and total lift coefficients are also tabulated. In ad-

dition, the potential, vortex, and total lift coemcients as well as the vortex and

potential constants are calculated. The total lift and moment coefficients are the

two values which arc the most useful since they represent the aerodynamic char-

acteristics which would be measured in the wind tunnel or in flight. Tile other

values are most useful for comparing tile predictions of VLM-FIG with the predic-

tions of other programs.



Appendix B: Computer Program Listing

Filename: TOO.FOR

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'BLOK.FOR'

C 28 IN

INCLUDE 'PANEL.FOR'

C 4 IN
CALL VINITL

INCLUDE 'DATA.FOR'

CALL GEOM
CALL ZWINGIN

CALL SLOPE
CALL FLAPLE

CALL FLAPTE

CALL ZWAKEIN

DO WHILE (ITER .NE. O)

NCOUNT=NCOUNT+ 1

WRITE(6,*) 'NC0UNT' ,NCOUNT
CALL BIOTVEC

CALL ZWAKEIN

IF (NEVEN .EQ. i) THEN
CALL CNDNS4

CALL CNDNS2

DO I00 I=I,KAU
B(I)=UINF*DSIN(ALPHA-DELTS(I))*DCOS(DI)

i00 CONTINUE

CALL LEQTiF(A,M,N,IA,B,IDGT,WKAREA,IER)
CALL WLIFT

END IF

IF (NEVEN .EQ. i) THEN
NEVEN=2

ELSE
NEVEN=I

END IF

END DO

STOP

END

C
C SUBROUTINES SUBROUTINES SUBROUTINES

C

SUBROUTINE VINITL
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

INCLUDE 'BLOK.FOR'

C
C INITIALIZE THE VARIABLES

C

PI=DACOS(-I.ODO)

UINF=I.O

NCHORDI=NCHORD+I
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NSPANI=NSPAN+I

NWAKEI=NWAKE+I

LINES=NCHORD+NWAKEI
KAU=NCHORD*NSPAN

KA01=NSPAN*NWAKEI

ITER=I

IER=0

IDGT=0
NCOUNT=0

NEVEN=I

M=I

N=KAU

!A=I00
RETURN

END

C

C

C
SUBROUTINE GEOM

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

INCLUDE 'BLOK.FOR'

C

LEEDMI=0

IF (LEEDS .GE. 2) THEN

LEEDMI=LEEDS-I

DO 500 I=I,LEEDM1
I1=I+1
ADAR(1)=(I./DTAN(SWEEP(1))-I./DTAN(SWEEP(II)))*CRAN(I)**2

CO(II)=CO(I)-(I./DTAN(SWEEP(I))-I./DTAN(SWEEP(II)))*CRAN(I)

500 CONTINUE
END IF

BTRI=2.0*(C0(LEEDS)+CN)*DTAN(SWEEP(LEEDS))

YCUT=CT*DTAN(SWEEP(LEEDS))

BCROP=(BTRI/2.0-YCUT)*2.0
AIRCUT=.5*CT*YCUT

AIRNOT=.5*CN*(BCROP/2.0)
AIRTRI=.5*(C0(LEEDS)+CN)*(BTRI/2.0)

IF (LEEDS .EQ. i) THEN

CRAN(1)=BCROP/2.0
END IF

IF (NTREDS .EQ. i) THEN
TRCRA(1)=BCROP/2.0

TRSPN(1)=BCROP/2.0
END IF

HOVB=H0VB*BCROP

SECDIS=HOVB/DSIN(ALPHA)

XSEC=I.0+SECDIS

NTREMI=0.0

IF (NTREDS .GE. 2) THEN

AIRNOT=R.0*AIRNOT

NTREMI=NTREDS-I
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DO 600 I=I,NTREMI

Ii=I+l
IMl=I-i

C
C CONVERT CHORDWISE TRCRA(I) TO SPANWISE TRSPN(I)

C WHY NOT JUST PUT IT IN AS A SPANWISE LOCATION?

C

IF (I .EQ. 1) THEN
TRTR=TRCRA(I)-CO(1)

IF (TWEEP(I) .LT..001) THEN

TRSPN(I)=SPOCK
ELSE

TRSPN(I)=TRTR/DTAN(TWEEP(I))

END IF

ELSE
TRTR=TRCRA(I)-TRCRA(IMI)

TRSPN(I)=TRSPN(INI)+TRTR/DTAN(TWEEP(I))

END IF

IF (TWEEP(I) .GT..001) THEN

TRAR=(.5/DTAN(TWEEP(I))-.5/DTAN(TWEEP(I1)))*TRTR**2

END IF

AIKNOT=AIKNOT-TKAR

6OO CONTINUE
TETRI=.5*CN*CN/DTAN(TWEEP(NTREDS))

AIKNOT=AIRNOT-TETRI

END IF

AIREA=2.0*(AIRTRI-AIRNOT-AIRCUT)

C

C

WRITE(6,*)'AREA OF WING',AIREA
IF (LEEDS .GE. 2) THEN

D0 700 I=I,LEEDMI
AIREA=AIREA+ADAR(I)

700 CONTINUE

END IF
AR=BCROP*BCROP/AIREA

WRITE(6,*)'ASPECT RATI0',AR
DELY=BCROP/(2.*FLOAT(NSPAN))
WEIGHT=4.0*DELY/AIREA

C
C CALCULATE THE VORTEX SEGMENT AND CONTROL POINT X,Y LOCATIONS

C

D0 910 I=I,NSPAN

DO 900 K=I,NCHORD
IMI=I-1

KNI=K-1

IF (I .EQ. I ) THEN

YCP (K,I)=DELY/2.0

YVLLFT(K,I)=YCP(K,I)-DELY/2.0

YVLRGT(K,I)=YCP(K,I)+DELY/2.0
ELSE
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YCP(K, I) =YCP(K, IM 1)+DELY
YVLLFT (K, I)=YCP (K, I)-DELY/2.0
YVLRGT (K, I)=YCP (K, I)+DELY/2.0
END IF

C
C CALCULATE THE CHORD AT A GIVEN Y LOCATION

C

DO 800 ICE=I,3
IF (ICE .EQ. I) THEN

C0RE=YCP(K,I)
CALL FOUND

XLOST=ALOSS

CALL TEFIND

XEXTRA=EXTRA

END IF

IF (ICE .EQ. 2) THEN
CORE=YCP(K,I)-DELY/2.0

CALL FOUND

XLOSTL=ALOSS

CALL TEFIND
XEXTRAL=EXTRA

END IF

IF (ICE .EQ. 3) THEN

CORE=YCP(K,I)+DELY/2.0
CALL FOUND

XLOSTR=ALOSS

CALL TEFIND

XEXTRAR=EXTRA

END IF

80O CONTINUE
CRDATY(I)=I.0+XEXTRA-XLOST

CRDATL=I.0+XEXTRAL-XLOSTL

CRDATR=I.0+XEXTRAR-XLOSTR

C
C CALCULATE DELTA X AT LEFT,RIGHT AND AT CONTROL POINT

C
DELX=CRDATY(I)/(FLOAT(NCHORD))

DELXL=CRDATL/(FLOAT(NCHORD))

DELXR=CRDATR/(FLOAT(NCHORD))

IF (K .EQ. i) THEN

XCP(K,I)=.75*DELX+(XL0ST)

XVLLFT(K,I)=.25*DELXL+(XL0STL)
XVLRGT(K,I)=.25*DELXR+(XLOSTR)

ELSE

XCP(K,I)=XCP(KMI,I)+DELX

XVLLFT(K,I)=XVLLFT(KMI,I)+DELXL

XVLRGT(K,I)=XVLRGT(KHI,I)+DELXR
END IF

YTEL(I)=YVLLFT(K,I)

YTER(I)=YVLRGT(K,I)

XTEL(I)=CRDATL+XLOSTL
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XTER (I) =CRDATR+XLOSTR
900 CONTINUE

910 CONTINUE

RETURN
END
C
C
C
SUBROUTINE FOUND
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

INCLUDE 'BLOK. FOR'
IF (CORE .LE. (RAN(l) .0R. (CRANCI)-CORE) .LT..0000001) THEN

AL0 SS=CORE/DTAN (SWEEP (i))

XWEE=SWEEP (1)
ELSE

FIND=I .0

MOT=I
D0 WHILE (FIND .LT. i0.0)

MOT=MOT+I

MOTMI=MOT-I

IF (MOT .LE. LEEDMI) THEN
YKRANK=CRAN (MOT)

ELSE

YKRANK=BCROP

END IF

IF (CORE .LE. YKRANK) THEN

IF (FCOR .GT. CRAN(MOTMI)) THEN

FIND=25.0

XWEE=SWEEP (MOT)

DO i000 MOE=I,MOTMI
MOEMI=MOE- I

IF (MOE .EQ. I) THEN
ALO SS=CRAN (1)/DTAN (SWEEP (1))

ELSE
ALOSS=ALOSS+ (CRAN (MOE) -CRAN (MOEM 1))/DTAN (SWEEP (MOE))

END IF
1000 CONTINUE

ALOSS=ALOSS+ (CORE- (RAN (MOTM 1))/DTAN (SWEEP (MOT))

END IF

END IF

END DO
END IF

RETURN
END

C

C

C

SUBROUTINE TEFIND

IMPLICIT DOUBLE PRECISION CA-H,O-Z)

INCLUDE 'BLOK. FOR'

IF (CORE .LE. TRSPN(1)) THEN
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EXTRA=CORE*DTAN(TWEEP(1))

ELSE

FIND=I.0

MOT=I

DO W}IILE (FIND .LT. i0.0)

MOT=MOT+I

MOTMI=MOT-I

IF (MOT .LE. NTREMI) THEN

YKRANK=TRSPN(MOT)

ELSE

YKRANK=BCROP

END IF

IF (CORE .LE. YKRANK) THEN

IF (CORE .GT. TRSPN(MOTMI)) THEN

FIND=25.0

DO ii00 MOE=I,MOTMI
MOEMI=MOE-I

IF (MOE .EQ. I) THEN

EXTRA=TRSPN(1)*DTAN(TWEEP(1))

ELSE

EXTRA=EXTRA+(TRSPN(MOE)-TRSPN(MOEMI))*DTAN(TWEEP(MOE))

END IF

liO0 CONTINUE

EXTRA=EXTRA+(CORE-TRSPN(MOTMI))_DTAN(TWEEP(MOT))

END IF

END IF

END DO

END IF

RETURN

END

C

C

C

SUBROUTINE ZWINGIN

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

INCLUDE 'BLOK. FOR'

IF (NEVEN .EQ. I0) THEN

C WRITE(6,_) 'XTEL ', 'YTEL ','FIND Z'

DO 4400 I=i ,NSPAN

C WRITE(6_) XTEL(I) ,YTEL(I)

4400 CONTINUE

C WRITE(6,_) , 'XTER ' ,'¥TER ', 'FIND Z'

DO 4410 I=I,NSPAN

C WRITE(6, _), XTER(I) ,YTER(I)

4410 CONTINUE

DO 4420 I=I,NSPAN

C READ (6 ,_) ZTEL(I)

ZTEL (I) =0.0

4420 CONTINUE

DO 4430 I=I,NSPAN

C READ (6, _) ZTER(I)
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ZTEK(I)=O.O

4430 CONTINUE

C
C NOW THE Z COORDINATES OF THE LEFT AND THEN RIGHT VORTEX SEGMENTS

WILL

C BE CALCULATED

C

C WRITE(6,*)'XVLLFT','YVLLFT','FINDZ'

DO 4440 I=I,NSPAN

DO 4440 K=I,NCHORD
C WRITE(6,*)XVLLFT(K,I),YVLLFT(K,I)
4440 CONTINUE

C WRITE(6,*)'XCP ','YCP ','FIND Z'
DO 4450 I=I,NSPAN

DO 4450 K=I,NCHORD

C WRITE (6, *)XCP (K, I) ,YCP (K, I)
4450 CONTINUE

C WRITE(6,*)'XVLRGT','YVLRGT','FINDZ'

DO 4460 I=I,NSPAN

DO 4460 K=I,NCHORD

C WRITE(6,*),XVLRGT(K,I),YVLRGT(K,I)
4460 CONTINUE

DO 4470 I=I,NSPAN
DO 4470 K=I,NCHORD

C READ(6,*)ZVLLFT(K,I)

ZVLLFT(K,I)=O.O
4470 CONTINUE

DO 4480 I=I,NSPAN

DO 4480 K=I,NCHOKD
C READ(6,*)ZVLRGT(K,I)

ZVLRGT (K, I):0.0
448O CONTINUE

DO 4490 I=I,NSPAN

DO 4490 K=I ,NCHORD

C READ (6 ,*)ZCP (K,I)

ZCP (K, I):0.0
4490 CONTINUE

END IF

RETURN

END

C

C

C
SUBROUTINE SLOPE
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

INCLUDE 'BLOK.FOR '

DO 50 I=I,NSPAN

DO 50 K=I,NCHORD

DZDX(K,I)=O.O
50 CONTINUE

RETURN
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C

C
SUBROUTINE FLAPLE

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INCLUDE 'BLOK.FOR'

LECT=O

D0 2000 JA=I,NLEFL

IF (IDFLECT(JA).Eq. I) THEN
LECT=LECT+I

NUML(LECT)=JA

WKITE(6,.)'NUML(LECT),LECT',NUML(LECT),LECT
END IF

2000 CONTINUE

IF (LECT .NE. O) THEN

DO 2200 JI=I,LECT
JA=NUML (JI)

JAI=JA+I

FUNPTX=(FOUTY(JA)-FLINY(JA))*DTAN(FANG(JA))+FLINX(JA)
FUNPTX=FUNPTX+FOUTX(JA)*DTAN(FANG(JA))*DTAN(FANG(JA))

FUNPTX=FUNPTX/(I.0+DTAN(FANG(JA))*DTAN(FANG(JA)))

FUNPTY=FLINY(JA)+(FUNPTX-FLINX(JA))/DTAN(FANG(JA))

C
FLUX=FLINY(JA)-FOUTY(JA)+FLINX(JA)*DTAN(FANG(JA))

FLUX=FLUX+FOUTX(JA)*DTAN(FLASWE(JA))

FLUX=FLUX/(DTAN(FANG(JA))+DTAN(FLASWE(JA)))

FLUY=FLINY(JA)+(FLINX(JA)-FLUX)*DTAN(FANG(JA))

DO 2100 I=I,NSPAN

DO 2100 K=I,NCHORD
D0 2100 LOW=I,3

IF (LOW .EQ. I) THEN

XPOIN=XCP(K,I)

YPOIN=YCP(K,I)
ZPOIN=ZCP(K,I)

END IF

IF (LOH .EQ. 2) THEN

XPOIN=XVLLFT(K,I)
YPOIN=YVLLFT(K,I)

ZPOIN=ZVLLFT(K,I)

END IF

IF (LOW .EQ. 3) THEN

XPOIN=XVLRGT(K,I)
YPOIN=YVLRGT(K,I)

ZPOIN=ZVLRGT(K,I)

END IF

C

C REGION i

C

IF (ILIGN .EQ. I) THEN

IF (JA .EQ. I) THEN
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IF (XPOIN .LE. FLINX(JA)) THEN

CALL PERPLE

END IF

END IF

END IF

IF (JA .NE. 1 .OR. ILIGN .NE. 1) THEN

IF (XPOIN .LE. FLINX(JA)) THEN

IF (XPOIN .GE. FLUX) THEN

YUM=FL INY (JA) + (FLINX (JA) -XPO IN) ,DTAN (FANG (JA))

IF (YPOIN .GE. YUN) THEN

CALL PERPLE

END IF

END IF

END IF

END IF

C

C REGION 2

C

IF (XPOIN .GE. FLINX(JA)) THEN

IF (XPOIN .LE. FOUTX(JA)) THEN

YUH=FLINY (JA) + (XPO IN-FLINX (JA))/DTAN (FANG (JA))

IF (YPOIN .GE. YUM) THEN

CALL PERPLE

END IF

END IF

END IF

C

C REGION 3

C

IF (XPOIN .GE. FOUTX(JA)) THEN

IF (NUMEDGL .EQ. NUML(JI)) THEN

XUM=FL INX (JA) + (FOUTY (JA) -FLINY (JA)) *DTAN (FANG (JA))

IF (XPOIN .LE. XUM) THEN

YUM=FOUTY (JA) + (XPOIN-XUM)/DTAN (FANG (JA))

IF (YPOIN .GE. TUN) THEN

CALL PERPLE

END IF

END IF

ELSE

IF (XPOIN .LE. FUNPTX) THEN

TEMX=FLUX

TEMY=FLUY

FLUX=FLINY (JA 1)-FOUTY (JA i)+FLINX (JA 1) *DTAN (FANG (JA 1) )

FLUX=FLUX+FOUTX (JA 1)*DTAN (FLASWE (JA 1) )

FLUX =FLUX/(DTAN (FANG (JA 1) )+DTAN (FLASWE (JA 1)) )

FLUY=FLINY (JA1) + (FL INX (JA1) -FLUX) *DTAN (FANG (JA1))

YUM= (XPOIN-FLINX (JA))/DTAN (FANG (JA)) +FLINY (JA)

IF (YPOIN .GT. YUM) THEN

IF (XPOIN .LE. FLUX) THEN

CALL PERPLE

ELSE
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YUM=FLUY- (XP0 IN-FLUX) ,DTAN (FANG (JA i))

IF (YPOIN .LE. YUM) THEN
CALL PEKPLE

END IF

END IF

END IF

FLUX=TEMX

FLUY=TEMY

END IF
END IF

END IF

IF (LOW .EQ. i) THEN

ZCP (K, I)=ZPOIN
END IF

IF (LOW .EQ. 2) THEN

ZVLLFT (K, I)=ZPOIN
END IF

IF (LOW .EQ. 3) THEN

ZVLRGT (K, I)=ZPOIN
END IF

2100 CONTINUE

2200 CONTINUE

END IF
RETURN

END

C

C

C

SUBROUTINE PERPLE

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INCLUDE 'BLOK. FOR'

C

PERX= (YP0 IN-FUNPTY) _DTAN (FANG (JA)) +FUNPTX

PERX=PERX+XP0 IN_DTAN (FANG (JA)) _DTAN (FANG (JA))

PERX=PERX/( i.0+DTAN (FANG (JA)) ,DTAN (FANG (JA)) )
PERY=YPOIN+ (XPOIN-PERX) _DTAN (FANG (JA))

DISTN= ((XP0 IN-PEKX) _2+ (YP0 IN-PERY) _2) _. 5
ZPOIN=ZPOIN-D ISTN_DC0S (DI) _DS IN (DELLE (JA))

IF (LOW .EQ. i) THEN
DZDX (K, I)=DZDX (K, I)+DTAN (DELLE (JA)) _DCOS (FANG (JA))
END IF

RETURN

END

C

C
C

SUBROUTINE FLAPTE

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

INCLUDE 'BLOK. FOR'

ITECT=0

D0 3000 JA=I,NTEFL
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IF (ITEFLEC(JA) .EQ. i) THEN
ITECT=ITECT+I

NUNT (ITECT) =JA
END IF

WRITE (6 ,_) 'NUMT (ITECT) ,ITECT' ,NUMT (ITECT) ,ITECT
3000 CONTINUE

IF (ITECT .NE. O) THEN

DO 3200 JI=I,ITECT
JA=NUMT(JI)
JAI=JA+I

C

IF (ILINTI(JA) .EQ. I) THEN
TIX= (TFINY (JA) -TOUTY (JA)) ,DTAN (TFANG (JA)) +TOUTX (JA)

TIY=TFINY (JA)

ELSE

TIX=TOUTX (JA)+ (TFINY (JA) -TOUTY (JA)) ,DTAN (TFANG (JA) )
TIX=TIX+TF INX (JA)-DTAN (TFANG (JA)) ,DTAN (TFANG (JA))

TIX=TIX/(1. O+DTAN (TFANG (JA)) _DTAN (TFANG (JA)) )

TIY=TFINY (JA)+ (TFINX (JA)-TIX) ,DTAN (TFANG (JA))

END IF

IF (ILINTO(JA) .EQ. 1) THEN
TOY=TOUTY (JA)

TOX=TOUTX (JA)+ (TOUTY (JA)-TFINY (JA)) _DTAN (TFLSWE (JA))

ELSE

TOX= (TOUTY (JA) -TFINY (JA)) _DTAN (TFLSWE (JA)) +TFINX (JA)
TOX=TOX+TOUTX (JA) ,DTAN (TFANG (JA) ),DTAN (TFLSWE (JA) )

TOX=TOX/( 1.O+DTAN (TFANG (JA)) ,DTAN (TFLSWE (JA)) )

TOY=TOUTY (JA)+ (TOUTX (JA)-TOX) _DTAN (TFANG (JA))

END IF
C

DO 3160 I=I,NSPAN

DO 3140 K=I ,NCHOKD
DO 3120 LOT=l,5
IF (LOT .EQ. 1) THEN
XPOIN=XCP (K, I)
YPO IN=YCP (K, I)

ZPOIN=ZCP (K, I)

END IF

IF (LOT .EQ. 2) THEN
XPOIN=XVLLFT (K, I)

YPOIN=YVLLFT (K, I)

ZPO IN=ZVLLFT (K, I)

END IF

IF (LOT .EQ. 3) THEN
XP0 IN=XVLRGT (K, I)

YP0 IN=YVLRGT (K, I)

ZPOIN=ZVLRGT (K, I)
END IF

IF (LOT .EQ. 4) THEN

IF (K .EQ. 5) THEN
XPOIN=XTEL (I)
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YPOIN=YTEL(I)
ZP0IN=ZTEL(I)
ENDIF
ENDIF
IF (LOT .Eq. 5) THEN
IF (K .EQ. 5) THEN
XPOIN=XTER(1)
YPOIN=YTER(I)
ZPOIN=ZTER(I)
ENDIF
ENDIF
C
XUM=TIX+(YPOIN-TIY),DTAN(TFANG(JA))
IF (XPOIN.GE. XUM) THEN

IF (ILINTI(JA) .Eq. i) THEN

IF (YPOIN .GE. TIY) THEN
IF (ILINTO(JA) .Eq. i) THEN

IF (YPOIN .LE. TOY) THEN
CALL PERPTE

NTMOVE=I

END IF

ELSE

YUN=TOY+ (TOX-XPOIN) _DTAN (TFANG (JA))

IF (YPOIN .LE. YUM) THEN
CALL PERPTE

NTM0VE=I

END IF

END IF

END IF

ELSE
YUM=TF INY (JA) +(TF INX (JA) -XP0 IV) _DTAN (TFANG (JA))

IF (YPOIN .GE. YUN) THEN

IF (ILINT0(JA) .EQ. I) THEN

IF (YPOIN .LE. TOY) THEN

CALL PERPTE
NTMOVE= i

END IF

ELSE

YUN=TOY+ (TOX-XPOIN) *DTAN (TFANG (JA))

IF (YPOIN .LE. YUM) THEN

CALL PERPTE

NTMOVE= 1

END IF
END IF

END IF

END IF

END IF

C

IF (LOT .Eq. i) THEN

ZCP(K,I)=ZPOIN
END IF
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IF (LOT .Eq. 2) THEN

ZVLLFT (K, I)=ZPOIN
END IF

IF (LOT .EQ. 3) THEN

ZVLRGT (K, I)=ZP01N
END IF

IF (LOT .EQ. 4) THEN

IF (K .EQ. 5) THEN
ZTEL(I) =ZPOIN
END IF

END IF

IF (LOT .EQ. 5) THEN

IF (K .EQ. 5) THEN
ZTER(I) =ZPOIN
END IF

END IF

3120 CONTINUE
3140 CONTINUE

3160 CONTINUE

3200 CONTINUE

END IF

RETURN

END
C

C

C

SUBROUTINE PERPTE

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
INCLUDE 'BLOK. FOR'

C
PERX=TOUTX (JA) + (YP0 IN-TOUTY (JA)) *DTAN (TFANG (JA))

PERX=PERX+XP 0IN*DTAN (TFANG (JA)) .DTAN (TFANG (JA))

PERX=PERX/( 1.0+DTAN (TFANG (JA)) *DTAN (TFANG (JA)) )

PERY=YP0 IN+ (XPOIN-PERX) *DTAN (TFANG (JA))

DISTN= ((XPOIN-PERX) **2+ (YP0 IN-PERY) **2) **. 5

ZPOIN=ZP0 IN-DISTN*DCOS (DI) *DSIN (DELTE (JA))

IF (LOT .EQ. i) THEN

DZDX (K, I)=DZDX (K, I) -DTAN (DELTE (JA)) .DC0S (TFANG (JA))
END IF

RETURN

END

C

C
C

SUBROUTINE ZWAKEIN

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INCLUDE 'BLOK. FOR'

DIMENSION VECIL (3,20), VECIR (3,20), VEC2L (3,20), VEC2R (3,20),

1 TEANGL (20), TEANGR (20), VLIMAG (20), VRIMAG (20), VL2MAG (20),

2 VR2MAG(20) ,XOWL(20, i0) ,YOWL(20, I0), ZOWL(20, i0) ,XOWK(20, i0),
3 YOWR(20,10), ZOWR(20, I0) ,NODER(20, I0) ,NODEL(20,10)
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G=I .0
NSUM=NWAKEI*NSPAN

COD= (PI/180.0) *.01

IF (NC0UNT .EQ. 0) THEN

D0 4550 I=I,NSPAN

DO 4550 K=I ,NWAKE1
C
C WAKE VORTEX LINE L0CATIONS

C

XWVLLF (K, I)=XTEL (I) +WAKDEL*FLOAT (K)

XOWL (K, I)=XWVLLF (K, I)
YWVLLF (K, I)=YTEL (I)

YOWL (K, I)=YWVLLF (K, I)

ZWVLLF (K, I)=ZTEL (I)

ZOWL (K, I)=ZWVLLF (K, I)
XWVLRT (K, I)=XTER (I) +WAKDEL*FLOAT (K)

XOWR (K, I)=XWVLRT (K, I)

YWVLRT (K, I)=YTER (I)

YOWR (K, I)=YWVLRT (K, I)

ZWVLRT (K, I)=ZTER (I)

Z0WR (K, I)=ZWVLRT (K, I)
4550 CONTINUE

END IF

C

IF (NEVEN .EQ. 2) THEN
C
C DETERMINE VECTOR i ON THE LEFT AND RIGHT OF THE PANEL

C

DO 4580 I=I,NSPAN
D0 4570 K=I ,NWAKEI
Ii=I+l

IMl=I-1
KMI=K-I

KK=K

II=I

IF (K .EQ. I) THEN

VECIL(I,I)=XWVLLF(K,

VEClL(2,I)=YWVLLF(K,

VEClL(3,I)=ZWVLLF(K,

VECIR(I,I)=XWVLRT(K,

VECIR(2,I)=YWVLRT(K,
VECIR(3,I)=ZWVLRT(K,
ELSE

VECIL(I,I)=XWVLLF(K,

VEClL(2,I)=YWVLLF(K,

VECIL(3,I)=ZWVLLF(K,

VECIR(I,I)=XWVLRT(K,

VEClR(2,I)=YWVLRT(K,

VECIR(3,I)=ZWVLRT(K,
END IF

I)-XTEL (I)

I)-YTEL (I)

I)-ZTEL (I)

I)-XTER (I)

I)-YTER(I)
I)-ZTER(I)

I)-](0WL (KM 1,I)

I)-YOWL (KM 1,I)

I)-ZOWL (KM 1,I)

I)-XOWR (KM 1,I)

I)-YOWR (KM 1,I)

I)-ZOWR(KMI ,I)
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C DETERNINETHE VECTORS TO THE NEW LOCATIONS

C

VEC2L(1,1)=DCOS(ALPHA)+C0SUMX(K,I)

VEC2L(2,I)=COSUMY(K,I)

VEC2L(3,I)=DSIN(ALPHA)+C0SUMZ(K,I)

VEC2R(1,I)=DCOS(ALPHA)+C0SUMX(K,I1)

VECRR(2,I)=C0SUMY(K,II)

VECRR(3,I)=DSIN(ALPHA)+COSUMZ(K,I1)

C

C

C FIND VECTOR MAGNITUDES

C

VLIMAG(I)=(VEClL(I,I)**2+VECIL(2,I)**2+

I VECIL(3,I)**2)**.5

VRINAG(I)=(VEClR(I,I)**R+VECIR(2,I)**2+

I VECIR(3,I)**2)**.5

VL2NAG(I)=(VEC2L(I,I)**R+VEC2L(2,I)**2+

i VEC2L(3,I)**2)**.5

VR2MAG(I)=(VEC2R(I,I)**2+VEC2R(2,I)**2+

i VEC2R(3,I)**2)**.5

C

C MAKE VECTOR 2 A UNIT VECTOR

C

VEC2L(I,I)=VEC2L(I,I)/VL2NAG

VEC2L(2,I)=VEC2L(2,I)/VL2MAG

VEC2L(3,I)=VECRL(3,I)/VLRNAG

VEC2R(1,I)=VEC2R(1,I)/VR2NAG_

VEC2R(2,I)=VEC2R(2,I)/VR2NAG(

VEC2R(S,I)=VEC2R(3,I)/VR2MAG_

C

C MOVE WAKE LOCATIONS, STRETCH

C

XWVLLF(K,I)=XOWL(K

YWVLLF(K,I)=YOWL(K

ZWVLLF(K,I)=ZOWL(K

XWVLRT(K,I)=X0WR(K

YWVLRT(K,I)=YOWR(K

ZWVLRT(K,I)=ZOWR(K

C

I)
I)
I)
i)
I)
i)

OR SHRINK VECTOR CONPONENTS

,i)
,I)+VEC2L(2,I)*WAKDEL/VEC2L(1,I)

,I)+VEC2L(3,I)*WAKDEL/VEC2L(I,I)

,I)
,I)+VEC2R(2,I)*WAKDEL/VEC2R(I,I)

,I)+VEC2R(3,I).WAKDEL/VEC2R(I,I)

C USE DOT PRODUCT TO FIND ANGLES BETWEEN 0LD AND NEW WAKE NODES

C

CHECKL=(VEClL(I,I)*VEC2L(I,I)+VECIL(2,I)*

1VEC2L(2,I)+VECIL(3,I)*VEC2L(3,I))/(VLIMAG(I))

CHEK=DABS(I.O-CHECKL)

IF (CHEK .LT. 0.000000001) THEN

TEANGL(I)=0.0

ELSE

TEANGL(I)=DACOS(CHECKL)

END IF

C WRITE(9,*)'TE ANGLE VI-V2 ON LEFT',TEANGL(I)*IS0./PI
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C

CHECKR=(VEClR(I,I)*VEC2R(I,I)+VEClR(2,I)*

I VEC2R(2,I)+VEClR(3,I)*VEC2R(3,I))/(VRIMAG(I))
CHEK=DABS(I.0-CHECKR)

IF (CHEK .LT. 0.000000001) THEN

TEANGR(I)=0.0

ELSE

TEANGR(I)=DAC0S(CHECKR)

END IF

C WRITE(9,*)'TE ANGLE Vl-V2 ON RIGHT',TEANGR(I)*IS0./PI

C WRITE(9,*) ' '
C

C CHECK FOR CONVERGENCE AT ALL OF THE WAKE NODES

C
IF (NC0UNT .LT. 19) THEN

IF (DABS(TEANGL(I)) .LT. C0D) THEN

C WRITE(9,*) 'THROUGH LEFT ANGLE I,K',I,K

NODEL(K,I)=I
IF (DABS(TEANGR(I)).LT. COD) THEN

C WRITE(9,*) 'THROUGH RIGHT ANGLE,I,K',I,K

NODER(K,I)=I
IF (K .EQ. NWAKEI .AND. I .Eq. NSPAN) THEN

NSUML=0
NSUMR=0

DO 4560 II=I,NSPAN

DO 4560 KK=I,NWAKE1
NSUML=NSUML+NODEL(KK,II)

NSUMR=NSUMR+NODER(KK,II)

4560 CONTINUE

IF (NSUML .EQ. NSUM .AND. NSUMR .EQ. NSUM) THEN

WRITE(9,*)'ITER = 0'

ITER=0
TOTKI=0.0

DO 4565 II=I,NSPAN
IIl=II+l

WI(II)=-(COSUMZ(1,II)+COSUMZ(1,III))/2.0

WRITE(9,*)'WI (Y) ',WI(II)

4565 CONTINUE
CALL VORTEX

CALL PPITCH

CALL VPITCH

END IF
END IF

END IF

END IF

ELSE

IF (K .EQ. N-WAKEI .AND. I .EQ. NSPAN) THEN

WKITE(9,*)'ITER = 0'

WRITE(9,*)'TRUNCATED AT NC0UNT=',NCOUNT
ITER=0

TOTKI=0.0
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D0 4566 II=I,NSPAN
II1=II+1

WI(II)=-(COSUMZ(I,II)+COSUMZ(I,II1))/2.0

WRITE(9,*)'WI (Y) ',WI(II)
4566 CONTINUE

CALL VORTEX

CALL PPITCH

CALL VPITCH

END IF

END IF

4570 CONTINUE

4580 CONTINUE

END IF

RETURN

END

C

C

C

SUBROUTINE BIOTVEC

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

INCLUDE 'BLOK.FOR '

C

C THE INFLUENCE COEFFICIENTS 0F THE BOUND VORTICES ARE CALCULATED
C

MIL0=I

D0 1200 I=I,NSPAN

DO 1200 MATT=I,NCHORD

QU=XVLRGT(MATT,I)

QV=YVLRGT(MATT,I)

QW=ZVLRGT(MATT,I)

QX=XVLLFT (MATT, I)

QY=YVLLFT(MATT,I)

qZ=ZVLLFT(MATT,I)
CALL BIGSUB

1200 CONTINUE

NIL0=2

C

C THE INFLUENCE C0EFFICIENTS 0F THE LEFT VORTEX SEGMENTS ARE CALCU-
LATED

C

DO 1300 I=I,NSPAN

DO 1300 MATT=I,NCHORD

DO 1300 K=MATT,LINES

KI=K+I

IF (K .LT. NCHORD) THEN

QU=XVLLFT(K,I)

QV=YVLLFT(K,I)

qW=ZVLLFT (K, I)

QX=XVLLFT(KI,I)

QY=YVLLFT(KI,I)

QZ=ZVLLFT(KI,I)



4... I

9?

CALL BIGSUB

END IF

IF (K .Eq. NCHORD) THEN

qU=XVLLFT (K, I)

QV=YVLLFT (X, I)

qW=ZVLLFT (K, I)

QX=XTEL (I)

QY=YTEL(I)

qZ=ZTEL(I)

CALL BIGSUB

END IF

IF (X .EQ. NCHORDI) THEN

KW=K-NCHORD

QU=XTEL(I)

QV=YTEL(I)

QW=ZTEL(I)

QX=XWVLLF (KW, I)

QY=YWVLLF (KW, I)

QZ=ZWVLLF (KW, I)

CALL BIGSUB

END IF

IF (K .GT. NCHORD1) THEN

KW=K-NCHORD

KW I=K-NCHOR/) i

QU=XWVLLF (KWI, I)

QV=YWVLLF (KWI, I)

QW=ZWVLLF (KWI, I)

QX=XWVLLF (KW, I)

QY=YWVLLF (EW, I)

qZ=ZWVLLF (KW, I)

CALL BIGSUB

END IF

1300 CONTINUE

C

C THE INFLUENCE COEFFICIENTS OF THE RIGHT VORTEX SEGMENTS ARE CALCU-

LATED

C

DO 1400 I=I,NSPAN

DO 1400 MATT=I,NCHOKD

DO 1400 K=MATT,LINES
KI=K+I

IF (K .LT. NCHORD) THEN

QX=XVLRGT (K, I)

QY=YVLRGT (K, I)

QZ=ZVLRGT (K, I)

QU=XVLRGT (El, I)

qV=YVLRGT (Ki, I)

QW=ZVLRGT (K i, I)

CALL BIGSUB

END IF

IF (K .EQ. NCHOKD) THEN



QX=XVLRGT(K,I)

QY=YVLRGT(K,I)

QZ=ZVLRGT(K,I)

QU:XTER(I)
QV=YTER(I)

QW=ZTER(I)
CALL BIGSUB

END IF

IF (K .EQ. NCHOKDI) THEN
KW=K-NCHORD

QX=XTER(I)

QY=YTER(I)

QZ=ZTER(I)

QU=XWVLRT(EW,I)
QV=YWVLRT(KW,I)

QW=ZWVLRT(KW,I)
CALL BIGSUB

END IF

IF (K .GT. NCHOKDI) THEN
KW=K-NCHORD

KWI=K-NCHORDI

QX=XWVLRT(KWI,I)

QY=YWVLRT(KWI,I)

QZ=ZWVLRT(KWI,I)

qU=XWVLRT(KW,I)
QV=YWVLRT(KW,I)

QW=ZWVLRT(KW,I)
CALL BIGSUB

END IF

1400 CONTINUE

RETURN

END

C

C

C

SUBROUTINE BIGSUB
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

INCLUDE 'BLOK.FOR'

C
C
C
C
C
C
C
C
C
C
C

USING THE Q(i) VORTEX SEGMENT LOCATIONSWHICH WERE PASSED

FROM THE MAIN PROGRAM, START A L00PWHICH DEFINES THE
APPROPRIATE VECTORS DEPENDING 0NWHETHERTHE SEGMENT IS

LOCATED 0N THE RIGHT-HALF WING (IL0C=I), THE LEFT-HALF

WING (ILOC=2), 0N THE IMAGE OF THE RIGHT-HALF WING BELOW
THE GROUND (IL0C=3), OR ON THE IMAGE 0FTHE LEFT-HALF WING

BELOW THE GROUND(IL0C=4).

PIGU=QU
PIGV=QV
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=

PIGW=QW

PIGX=QX

PIGY=QY

PIGZ=QZ

D0 4015 IL0C=I,IGE

IF (IL0C .EQ. 2) THEN

qX=PIGV
qY=-PIGV

QZ=PIGW

qU=PIGX

QV=-PIGY

QW=PIGZ

END IF

C

C UNDERGROUND

C

IF (ILOC .EQ. 3) THEN

QY=PIGV

qV=PIGY

RADIUS=(I.O-PIGU)+SECDIS

QX=XSEC-RADIUS*DCOS(2.*ALPHA)

qZ=-PIGW-RADIUS*DSIN(2.*ALPHA)*DCOS(2.*ALPHA)

RADIUS=(I.O-PIGX)+SECDIS

qU=XSEC-RADIUS*DCOS(2.*ALPHA)

QW=-PIGZ-RADIUS*DSIN(2.*ALPHA)*DCOS(2.*ALPHA)

END IF

IF (ILOC .EQ. 4) THEN

qV=-PIGV

qY=-PIGY

RADIUS=(I.O-PIGU)+SECDIS

qU=XSEC-RADIUS*DCOS(2.*ALPHA)

qW=-PIGW-RADIUS*DSIN(2.*ALPHA)*DCOS(2.*ALPHA)

RADIUS=(I.0-PIGX)+SECDIS

qX=XSEC-RADIUS*DCOS(2.*ALPHA)

qZ=-PIGZ-RADIUS*DSIN(2.*ALPHA)*DC0S(2.*ALPHA)

END IF

RO(1)=qu-qx

Ro(2)=qv-qY

R0(3)=QW-QZ

c

IF (NEVEN .Eq. I) THEN

DO 4000 J=I,NSPAN

DO 4000 L=I ,NCHORD

RI(1)=XCP(L,J)-QX

RI(2)=YCP(L,J)-QY

RI(3)=ZCP(L,J)-QZ

R2(1)=XCP(L,J)-QU

R2(2)=YCP(L,J)-QV

R2(3)=ZCP(L,J)-QW

IF (MIL0 .EQ. 1) THEN

IF (IL0C .EQ. I) THEN
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C0EFX(L,J,NATT,I)=0.0

C0EFY(L,J,NATT,I)=O.0

COEFZ(L,J,NATT,I)=0.0

END IF

END IF

C

CALL CROSS(RI,R2,RCROSS)

CALL SMAG(RI,R2,RCROSS,RIMAG,R2MAG,RCRMAG)

CALL DOT(R0,RI,R2,DOTR01,DOTR02)

CALL FACTOR(RCROSS,RCRMAG,FACl)

IF (DABS(RIMAG) .GT. .000000001) THEN

FAC2=DOTR01/RIMAG

ELSE

FAC2=0.0

END IF

IF (DABS(R2MAG) .GT. .000000001) THEN

FAC2=FAC2-DOTRO2/R2MAG

END IF

C

COEFX(L,J,MATT,I)=.25*FAC2*FACI(1)*DCOS(DI) *

i DSIN(DELTD(L,J))/PI+COEFX(L,J,MATT,I)

COEFY(L,J,MATT,I)=.25*FAC2*FACI(2)*DSIN(DI)*

i DC0S(DELTD(L,J))/PI+COEFY(L,J,MATT,I)

COEFZ(L,J,MATT,I)=-.25*FAC2*FACI(3)*DCOS(DI)*

i DCOS(DELTD(L,J))/PI+COEFZ(L,J,MATT,I)

4000 CONTINUE

ELSE

DO 4010 J=I,NSPANI

DO 4010 L=I,NWAKEI

JMI=J-I

LMI=L-I

IF (J .LT. NSPANI) THEN

IF (L .EQ. i) THEN

RI(1)=XTEL(J)-QX

RI(2)=YTEL(J)-QY

RI(3)=ZTEL(J)-QZ

R2(1)=XTEL(J)-QU

R2(2)=YTEL(J)-QV

R2(3)=ZTEL(J)-QW

ELSE

RI(1)=XWVLLF(LMI,J)-QX

RI(2)=YWVLLF(LMI,J)-QY

RI(3)=ZWVLLF(LMI,J)-QZ

R2(1)=XWVLLF(LM1,J)-QU

R2(2)=YWVLLF(LMI,J)-QV

R2(3)=ZWVLLF(LMI,J)-QW

END IF

IF (MIL0 .EQ. i) THEN

IF (IL0C .EQ. i) THEN

C0SUMX(L,J)=0.0

COSUMY(L,J)=0.0
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cosuMz (L,J)=0.0
END IF

END IF

CALL CROSS(RI ,R2 ,RCROSS)

CALL SMAG (RI, R2, RCROSS, RIMAG, R2MAG, RCRMAG)

CALL D0T (R0 ,R1 ,R2 ,DOTR01 ,DOTR02)

CALL FACTOR (RCROSS, RCRMAG, FAC i)

IF (DABS (RIMAG) .GT.. 0000001) THEN

FAC2=DOTR0 I/RIMAG

ELSE

FAC2=0.0

END IF

IF (DABS(R2MAG) .GT. .0000001) THEN

FAC2=FAC2-DOTRO2/R2MAG

END IF

C

COSUMX (L, J) =. 25*FAC2*FAC 1 (i) *GAMMA (MATT, I)/PI+

1 COSUMX(L, J)

COSUMY (L, J) =. 25*FAC2*FACl (2) *GAMMA (MATT, I)/PI+

i C0SUMY(L, J)

COSUMZ (L, J) =. 25*FAC2*FACI (3) *GAMMA (MATT, I)/PI+

1 COSUMZ (L, J)

C
C IF THE FAR RIGHT NODE IS EVALUATED

C

ELSE

IF (n

R1(1)

RI(2)

R1(3)

R2(1)

R2(2)

R2(3)

ELSE

RI(1)

R1(2)

RI(3)

R2(1)

R2(2)

•EQ. I) THEN

=XTER(JM1) -QX

=YTER(JMI)-QY

=ZTER (JM1) -qZ

=XTER (JM1) -qU

=YTER (JM1)-QV

=ZTER (JM1) -Ow

=XWVLRT(LMI,JMI)-QX

=YWVLRT(LMI,JMI)-QY

=ZWVLRT(LMI,JMI)-QZ

=XWVLRT(LMI,JMI)-QU

=YWVLRT(LMI,JMI)-QV

R2(3)=ZWVLRT(LMI,JMI)-QW

END IF

IF (MIL0 .EQ. I) THEN

IF (ILOC .EQ. i) THEN

COSUMX(L,J)=0.0

COSUMY(L,J)=0.0

COSUMZ(L,J)=0.0

END IF

END IF

C

CALL CROSS(RI,R2,RCROSS)

CALL SMAG(RI,R2,RCROSS,RIMAfi,R2MAG,RCRMAfi)
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CALL DOT(R0,R1,R2,DOTR01,DOTR02)
CALL FACTOR(RCROSS,RCRMAG,FACl)
IF (DABS(RIMAG).GT..0000001) THEN
FAC2=DOTR01/RIMAG

ELSE

FAC2=0.0

END IF

IF (DABS(R2MAG) .GT. .0000001) THEN
FAC2=FAC2-DOTRO2/R2MAG

END IF

C

COSUMX(L,J)=.25.FAC2.FACI(1)*GAMMA(MATT,I)/PI+

I COSUMX(L,J)

C0SUMY(L,J)=.25*FAC2*FACI(2)*GAMMA(MATT,I)/PI+

1C0SUMY(L,J)
COSUMZ(L,J)=.25*FAC2*FACi(3)*GAMMA(MATT,I)/PI+

i COSUMZ (L,J)

END IF
4010 CONTINUE

END IF
4015 CONTINUE

RETURN

END
C
C
C
SUBROUTINE CROSS(RI,R2,RCROSS)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION RI(3),R2(3),RCROSS(3)
RCROSS(1)=RI(2)*R2(3)-R2(2)*RI(3)

RCROSS(2)=R2(1)*RI(3)-RI(1)*R2(3)

RCROSS(3)=RI(1)*R2(2)-R2(1)*Ri(2)

RETURN

END
C

C

C
SUBROUTINE SMAG(RI,R2,RCROSS,RIMAG,R2MAG,RCRMAG)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION RI(3),R2(3),RCROSS(3)

RIMAG=(RI(1)**2+RI(2)**2+RI(3)*_2)_*.5

R2MAG=(R2(1)**2+R2(2)**2+R2(3)**2)**.5
RCRMAG=(RCROSS(1)**2+RCROSS(2)**2+RCROSS(3)**2)**.5

RETURN

END

C

C

C

SUBROUTINE DOT(R0,R1,R2,DOTR01,DOTR02)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION R1(3),R2(3),R0(3)
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DOTR0 I=R0 (I)*RI (i)+R0 (2)*RI (2)+R0 (3)*RI (3)
DOTR02=R0(1)*R2(1)+R0(2)*R2(2)+R0(B)*R2(3)

RETURN
END

C

C

C

SUBROUTINE FACTOR(RCROSS,RCRMAG,FACI)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIHENSION RCROSS(3),FACI(3)

IF (RCRMAG .GT..00000001) THEN

FACI(1)=RCROSS(1)/RCRMAG**2

FACI(2)=RCROSS(2)/RCRMAG**2
FACI(3)=RCROSS(3)/RCRMAG**2

ELSE

FACt(I)=0.0

FACI(2)=O.O

FACi(3)=O.O
END IF

RETURN

END

C

C
C

SUBROUTINE CNDNS4

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

INCLUDE 'BLOK.FOR'

MO0=O

LOO=MO0

DO 4200 I=i,NSPAN

DO 4200 K=I,NCHORD
M00=M00+I

DO 4100 J=I,NSPAN

DO 4100 L=I,NCHORD

L00=L00+I

COEFX2(L00,M00)=C0EFX(L,J,K,I)

COEFY2(L00,M00)=C0EFY(L,J,K,I)

COEFZ2(L00,M00)=COEFZ(L,J,K,I)
A(L00,M00)=COEFXR(L00,M00)+COEFY2(L00,M00) +

1C0EFZ2(L00,M00)
4100 CONTINUE

L00=0

4200 CONTINUE
RETURN

END

C

C

C
SUBROUTINE CNDNS2

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

INCLUDE 'BLOK.FOR'
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I0=0

DO 4300 J=I,NSPAN

D0 4300 L=I,NCHORD
I0=I0+l

DELTS(I0)=DATAN(DZDX(L,J))

DELTD(L,J)=DELTS(I0)
4300 CONTINUE

RETURN

END

C
C

C

SUBROUTINE WLIFT

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INCLUDE 'BLOK.FOR'

CLIFT=0.0

TOTKP=0.0

LORI=0

DO 620 J=I,NSPAN
CLISPN=0.0

DO 610 L=I,NCHOKD
LORI=LORI+I

GAMMA(L,J)=B(LORI)
CLIFT=GAMMA(L,J)*DCOS(ALPHA)*DCOS(ALPHA)+CLIFT

CLISPN=GAMMA(L,J)+CLISPN
610 CONTINUE
YKAPE(J)=CLISPN*WEIGHT/(DSIN(ALPHA))
TOTKP=YKAPE(J)+TOTKP
620 CONTINUE
CLIFT=CLIFT*WEIGHT
RETURN

END

C

C

C
SUBROUTINE VORTEX

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

INCLUDE 'BLOK.FOR'

CSUCK=0.0
LLAMA=0

DO 720 J=I,NSPAN
CLISPN=0.0

DO 710 L=I,NCHORD
LLAMA=LLAMA+I

GAMMA(L,J)=B(LLAMA)
CLISPN=GAMMA(L,J)+CLISPN

710 CONTINUE

CORE=YCP(1,J)

CALL FOUND
CONVRT=DCOS(ALPHA)/DSIN(XWEE)

CSUCK=CLISPN*CONVRT*(DSIN(ALPHA)-WI(J))+CSUCK
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720 CONTINUE

CLVORT=CSUCK*WEIGHT

WRITE(6,*)'BCROP,BPANEL',BCROP,BPANEL
TOTKV=CLVORT/(DSIN(ALPHA)*DSIN(ALPHA)*DCOS(ALPHA))

WRITE(6,*)'WEIGHT',WEIGHT

WRITE(6,*)'DELY',DELY
RETURN
END
C
C
C
SUBROUTINE PPITCH

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

INCLUDE 'BLOK.FOR'

PPIT=0.0

LORI=0

D0 620 J=I,NSPAN

DO 610 L=I,NCHORD
LORI=LORI+I

GAMMA(L,J)=B(LORI)
PPIT=GAMMA(L,J)*DC0S(ALPHA)*(CMOM-XCP(L,J))+PPIT

610 CONTINUE

620 CONTINUE

PPIT=PPIT*WEIGHT

RETURN
END
C
C
C
SUBROUTINE VPITCH

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'BLOK.FOR'

CSUCK=O.O

VPIT=O.O

LLAMA=0

DO 720 J=I,NSPAN
CLISPN=0.0

DO 710 L=I,NCHORD
LLAMA=LLAMA+I

GAMMA(L,J)=B(LLAMA)

CLISPN=GAMMA(L,J)+CLISPN

710 CONTINUE

CORE=YCP(I,J)
CALL FOUND

CONVRT=DCOS(ALPHA)/DSIN(XWEE)

TEMVIT=CLISPN*C0NVRT*(DSIN(ALPHA)-WI(J))

VPIT=TEMVIT.(CMOM-ALOSS)/CBAR+VPIT

720 CONTINUE

VPIT=VPIT*WEIGHT

PITMOM=VPIT+PPIT

CALL OUT
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RETURN

END

C

C

C

SUBROUTINE OUT

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

INCLUDE 'BLOK. FOR '

C

WRITE(9

WRITE(9

WRITE(9

WRITE(9

DO 8000

,13)'ANGLE OF ATTACK',ALPHA*IS0./PI

,II)'ASPECT RATI0',AR

,I1)'TAPER RATIO, CT/CO',CT

,ll)'NOTCH RATIO, CN/CO',CN

JM=I,LEEDS

WKITE(9,11)'LEADING EDGE SWEEP',90.-SWEEP(JM)*IS0./PI

8000 CONTINUE

WRITE(9,13)'POTENTIAL LIFT C0EFFICIENT',CLIFT

,II)'V0RTEX LIFT COEFFICIENT',CLVORT

,12)'TOTAL LIFT C0EFFICIENT',CLVORT+CLIFT

WRITE(9

WRITE (9
C

WRITE (9

WRITE(9

WRITE(9
C

WRITE(9

WRITE(9

C

,13)
,11)

,12)

'POTENTIAL PITCHING MOMENT',PPIT

'VORTEX PITCHING MOMENT',VPIT

'TOTAL PITCHING MOMENT',PITMOM

,13)'POTENTIAL CONSTANT, KP',TOTKP

,ll)'VORTEX CONSTANT, KV',TOTKV

11 FORMAT (3X, A27,5X, F9.4)

12 FORMAT(/, 3X,A27,5X,F9.4)

13 FORMAT (////3X ,A27,5X ,F9.4)

RETURN

END

Filename: BLOK.FOR

C

COMMON NSPAN,NCHOKD,qU,QV,QW,QX,QY,QZ,COEFX,COEFY,COEFZ,

i XCP,YCP,ZCP,XWCP,YWCP,ZWCP,MATT,I,MILO,NWAKE,WAKDEL,XTEL,YTEL,

2 ZTEL,XTER,YTER,ZTER,XWVLLF,YWVLLF,ZWVLLF,XWVLRT,YWVLRT,ZWVLRT,

3 NCOUNT,NSPANI,PI,NEVEN,ITER,COSUMX,COSUMY,COSUMZ,NCHORDi,DI,

4NWAKEI,DELY,LINES,GAMMA,K,UINF,CO,CN,CT,A,B,DELTS,DELTD,CLIFT,

5 ALPHA,ILOC,IGE,HOVB,WEIGHT,CRDATY,BCROP,XVLLFT,XVLRGT,YVLLFT

COMMON YVLRGT,ZVLLFT,ZVLRGT,KAU,KAOI,IER,IDGT,M,N,IA,LESYM,LOW,

i FLINX,FLINY,FOUTX,FOUTY,PERX,PERY,XPOIN,YPOIN,ZPOIN,FUNPTX,

2 FUNPTY,FANG,JA,DELLE,IDFLECT,NUML,NLEFL,ILIGN,FLASWE,NUMEDGL,

3 ITESYM,ITEFLEC,TOUTX,TOUTY,TFINX,TFINY,TFLSWE,TFANG,ILINTI,

4 ILINT0,NTEFL,DELTE,LOT,TOX,TOY,NUMT,SP0CK,CLV0RT,WI,LEEDMI,

5 CRAN,LEEDS,NTREDS,TWEEP,TRCRA,SWEEP,DELYB,CORDCL,YCPB

COMMON C0RE,ALOSS,TRSPN,NTREMI,EXTRA,XWEE,

i TOTKP,TOTKV,TOTKI,YKAPE,YKAVE,YKI,AIREA,BPANEL,

2 VPIT,PPIT,PITMOM,CNORML,CBAR,CMOM,SECDIS,XSEC,DZDX

DIMENSION R0(3),RI(3),R2(3),RCROSS(3),FACI(3),DELTS(100),
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I DELTD(10,10),B(100),XTEL(10),CRDATY(10),CORDCL(10),YTEL(IO),

2 ZTEL(10),XTER(10),YTER(10),ZTER(10),XCP(10,10),YCP(10,10),

3 YCPB(10,10),ZCP(10,10),XWCP(20,10),YWCP(20,10),ZWCP(20,10),

4 XVLLFT(10,10),YVLLFT(10,10),ZVLLFT(10,10),XVLRGT(10,10),

5 YVLRGT(10,10),ZVLRGT(10,10),A(100,100),XWVLLF(20,10),

6 YWVLLF(20,10),ZWVLLF(20,10),XWVLRT(20,10),YWVLRT(20,10)

DIMENSION ZWVLRT(20,10),COEFX2(100,100),COEFY2(100,100),

i C0EFZ2(100,100),C0EFX(10,10,10,10),COEFY(10,10,10,10),

2 C0EFZ(10,10,10,10),DZDX(IO,IO),GAMMA(10,10),COSUMX(20,10),

3 C0SUMY(20,10),COSUMZ(20,10),WKAREA(100),C0(10),SWEEP(10),

4 CRAN(9),ADAR(9),TWEEP(10),TRCRA(9),TRSPN(9),

5 FANG(10),FLASWE(10),DELLE(10),NUML(10),IDFLECT(IO),FLINX(10),

6 FLINY(10),FOUTX(10),FOUTY(10),ITESYN(10),TFANG(10),TFLSWE(10)

DIMENSION DELTE(10),NUMT(10),ITEFLEC(IO),TFINX(10),TFINY(10),

I TOUTX(10),TOUTY(10),ILINTI(10),ILINTO(IO),WI(10),YEAPE(10),

2 YKAVE(10),YKI(IO)

Filename: PANEL.FOR

C

C WING IS 9CH X 9SP MAX AND WAKE IS 19CH X 9SP MAX

C

NCHORD=5

NSPAN=4

NWAKE=I0

WAKDEL=.20

Filename: DATA.FOR

C

ALPHA=(PI/180.)*24.

C IGE=2

IGE=4

HOVB=.I

DI=-.10*(PI/180.)

co(i)=1.o
CT=0.0

CN=0.0

C CBAR=(2./3.)*CO(1)

CBAR=CO(1)
c CMOM=C0(1)/2.
CMOM=0.0

C

LEEDS=I

C SWEEP(1)=(PI/180.)*(90.0-45.000)

C SWEEP(1)=(PI/180.)*(90.0-48.814)

C SWEEP(1)=(PI/180.)*(90.0-53.1301)

C SWEEP(1)=(PI/180.)*(90.0-57.995)

C SWEEP(1)=(PI/180.)*(90.0-63.435)

C SWEEP(1)=(PI/180.)*(90.0-69.444)

C SWEEP(1)=(PI/180.)*(90.0-75.9368)

SWEEP(1)=(PI/180.)*(90.0-70.0)

C SWEEP(1)=(PI/180.)*(90.0-89.0)



C

NTREDS=I

TWEEP(1)=(PI/180.)*O.

SPOCK=.20 !!!SINCE TWEEP<.OOI!!!ALWAYS NEED THIS??
C

NLEFL=O

C

NTEFL=I

ILINTI(1)=I

ILINT0(1)=5
TFANG(1)=0.0

TFLSWE(1)=0.0

TFINX(1)=I.0

TFINY(1)=0.0
TOUTX(1)=.88

TOUTY(1)=.3203
ITEFLEC(1)=I
DELTE(1)=(PI/180.)*8.5
C
NUMEDGL=I
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A, B, C =

AR =

CL =

C_ ¢

CMo -----

CN =

Cs =

Cr =

G =

Crn

C?'?l. ?l

C. =

Cs --

G =

DIST =

IGE =

INT =

INT' =

Kp ---

Kv --

L =

NCHORD =

NSPAN =

OGE =

P =

S =

Nomenclature

points representing a set of (X,Y,Z) coordinates

aspect ratio

wing lift coefficient

wing pitching moment coefficient

.wing pitching moment coefficient at CL = 0

wing normal force coefficient

wing suction coefficient

wing thrust coefficient

section lift coefficient

section moment coefficient

influence coefficient at m due to n

section normal force coefficient

section suction coefficient

section thrust coefl]cient

z-direction distance between z_ and INT'

in ground effect

distance between tile points z = 1 and z = INT'

z-coordinate of the intersection of the rearward

extension of tile wing and the image plane

suction analogy potential constant

suction analog,',, vortex constant

wing lift

number of panels on the chord

number of panels on the semi-span

out of ground effect

pressure

wing area

109



T

V --

XTE(I) =

X, Y, Z =

b =

C

dl =

dV =

dz, dy, dz =

h =

h/b =
1 =

le =

r

X, y, Z =

transformation

free-stream velocity

z-coordinate of a particular trailing-edge point

spatial coordinates

wing span

section chord

incremental lift force

incremental distance in the direction of the orientation

of the axis of a vortex filament

incremental induced velocity

incremental distance

height above the ground

non-dimensional height above the ground

airfoil lift

leading edge

vector which connects an endpoint of a vortex segment to

another vector

trailing edge

velocity components in tile z-, y-, and

z-directions, respective])"

spatial coordinates

F = total circulation strength for a wing

Awake = distance between successive nodes in the wake

Ax = distance that the wake is moved in the x,-direction

Ay = width of the panels representing the wing, or

the distance that the wake is moved in the y-direction

Az = distance that the wake is moved in the z-direction

0 = angular measure

A = leading-edge sweep angle, measured from the root-chord line

to the leading-edge line
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¢

O_

7

6

P

= angular measure

= angle of attack

= circulation strength for an airfoil or vortex

= flap deflection

= density of the air

Subscripts

D

REF

source

T

i --

in "-

j =

n --

0 --

p =

O, 1, 2, 3 =

= distributed over one spatial dimension

= reference value used in a "source"

= referring to another's work

= trailing edge related

elevon

summation subscript or an individual item

induced

summation subscript

an individual item

root chord

perpendicular (for vectors)

referring to similar points at different locations or
at different times.

Superscripts

-- reference value

= time rate of change
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